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Statistics

Statistics (the name is historically related to the process of population census of states) is a brach of
mathematics devoted to the collection, analysis, interpretation or explanation, and presentation of data.
When possible, statisticians collect data about the entire population (census).
When a census is not feasible, a chosen subset of the population (sample) is studied. Once a sample
that is representative of the population is determined, data are collected for the sample members.

When data about the entire population, or a representative sample of the population have been
collected, the obtained values are presented as a set of raw data. Unless the number of observations is
small, raw data are unlikely to provide any information until they have been sorted in some way.
Then, the first step in the analysis falls into descriptive statistics: essentially, we focus on obtaining a
small number of synthetic descriptors able to summarize the data.
Numerical descriptors include mean and standard deviation, but also median and mode, while frequencies
and percentages are used in the description of categorical data.
Graphical representations of data are often used.

When we collect data of a sample, we must be aware of the elements of randomness in the choice of the
sample. Therefore, to get meaningful conclusions about the entire population, methods of inferential
statistics should be used, and probability results become essential.
The inferences may involve hypothesis testing, numerical estimates of the confidence of the descriptors
of data, correlations between the different characters of the population (or of the sample).
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Terminology

In applying statistics to a problem, we study what are called statistical units whose collection gives the
statistical population.
For each statistical unit we measure and collect some characters (or variables). The variables of each
statistical unit can be classified into two different types, depending on the type of values they take on:

1 numerical variable: if the values it assumes are numbers;

2 categorical variable: if the values it assumes are not numbers.

Example

Numerical variables: age, height, income, etc.
Categorical variables: eye colour, sex, breed, etc.
Some categorical data can be ordinal (like educational level), others cannot.

Classification of numerical variables

A numeric variable is said to be discrete if the set of values that it can assume is finite or countable.

A numeric variable is said to be continuous if the set of values that it can assume is the set R of
real numbers or an interval of real numbers.
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Example 1

By detecting with a measuring instrument the number of cosmic particles in 40 periods of one minute,
the following data are obtained:
{0, 4, 2, 4, 1, 4, 4, 2, 3, 3, 1, 5, 2, 5, 3, 1, 8, 1, 2, 2, 5, 4, 2, 4, 1, 2, 3, 3, 3, 3, 1, 3, 3, 3, 2, 3, 2, 3, 5, 2}

We have N = 40 observations. The variable is discrete, because the number of observed particles is
always a non-negative integer number, and the set of integers is infinite but countable.

Example 2

The following data are the result of 80 observations, in a given unit of measure, of the emission per day
of a pollutant gas from an industrial plant:

{15.8, 22.7, 26.8, 19.1, 18.5, 14.4, 8.3, 25.9, 26.4, 9.8, 22.7, 15.2, 23.0, 29.6, 21.9, 10.5, 17.3, 6.2, 18.0,
22.9, 24.6, 19.4, 12.3, 15.9, 11.2, 14.7, 20.5, 26.6, 20.1, 17.0, 22.3, 27.5, 23.9, 17.5, 11.0, 20.4, 16.2,
20.8, 13.3, 18.1, 24.8, 26.1, 20.9, 21.4, 18.0, 24.3, 11.8, 17.9, 18.7, 12.8, 15.5, 19.2, 7.7, 22.5, 19.3, 9.4,
13.9, 28.6, 19.4, 21.6, 13.5, 24.6, 20.0, 24.1, 9.0, 17.6, 16.7, 16.9, 23.5, 18.4, 25.7, 20.1, 13.2, 23.7,
10.7, 19.0, 14.5, 18.1, 31.8, 28.5}

We have N = 80 observations. The variable is continuous, because the measurement of the quantity of
gas emitted can be any positive real number.
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Example 3

In a factory, the number of cases of malfunctions of a computer-controlled machine, and their causes,
are recorded. The data for a certain month are as follows:

voltage fluctuations 6

instability of the control system 22

human error 13

instrument worn and not replaced 2

other causes 5

Total 48

We have N = 48 observations. The variable is categorical.
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Frequency: absolute and relative

Suppose that for a population with N statistical units, we record a character (a variable)
x = {x1, . . . , xN} for each individual. Whatever the character is (numerical or categorical) we can
compute the frequency of each value xk of the character, that is the number of individuals having the
value xk . Suppose that we have M possible values.
The frequency of the k-th value can be absolute (denoted by fk), or relative (the absolute frequency

divided by N, denoted by f̂k =
fk
N
). The following relations are obvious:

M∑
k=1

fk = N,

M∑
k=1

f̂k = 1.

Classes and frequency distribution

If the character is expressed by a number (for instance, the income), we can group the values in classes
(for istance, each class contains the incomes in a given interval), and compute the frequency of each
class.
Then, we construct a table representing the frequency distribution, i.e., a table that collects the values
according to the classes and the corresponding frequencies. The ordered data in the frequency
distribution table are called grouped data.
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About classes

The choice of how many classes and which intervals use are elements of arbitrariness. Several situations
may arise:

few classes, little information;

too many classes, too many details;

too many classes, not so much data.

Practical tips

One can choose different number of classes, or classes with different extremes; in any case, the
classes must not overlap and must contain all the data.

The number of classes must depend on the number of data.

Usually the classes all have the same size, but this characteristic is generally not mandatory and in
some cases the data type can suggest the choice of different size classes.

For a continuous numerical variable, it is necessary to specify whether the classes are closed to the
right and/or to the left, that is if the data coinciding with the extremes of the class must be
grouped in the class itself or in one of the adjacent classes.

Once the data has been grouped, each exact value of the data is no longer used: all the data
belonging to a certain class are represented by its midpoint, called the central value of the class.
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Rules

classes number =
√
N;

Sturges:
classes number = 1 + log2 N;

Rice:
classes number = 2

3
√
N;

Freedman-Diaconis:

classes size = 2
IQR
3
√
N
;

classes size =
max({x1, . . . , xN})−min({x1, . . . , xN})

classes number
.

. . .
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Example 1: discrete numeric variables

In example 1, the observed variable is a discrete numeric variable, which can only assume integer values;
since the assumed values are the integers 0, 1, 2, 3, 4, 5, 8, it is natural to choose as classes the numbers
k = 0, 1, 2, 3, 4, 5, 6, 7, 8 and count for each class the number of observations in which exactly k particles
have been detected.

Class fk f̂k

0 1 0.025

1 6 0.15

2 10 0.25

3 12 0.3

4 6 0.15

5 4 0.1

6 0 0

7 0 0

8 1 0.025

Total 40 1
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Example 1: discrete numerical variables

However, even for a discrete variable it is convenient use intervals as classes, instead of distinguishing all
assumed values, especially when the data are numerous.
We can use classes comprising two possible values of the variable observed:

Class fk f̂k

[0, 1] 7 0.175

[2, 3] 22 0.55

[4, 5] 10 0.25

[6, 7] 0 0

[8, 9] 1 0.025

Total 40 1
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Example 2: continuous numerical variables

In example 2, the observed variable is a continuous numeric variable. By using the Sturges rule

classes number = 1 + log2(80) ≃ 7

and

classes size =
max({x1, . . . , xN})−min({x1, . . . , xN})

classes number
=

31.8− 6.2

7
= 3.65714 ≃ 4,

we have

Class fk f̂k

[5, 8.9] 3 0.0375

[9, 12.9] 10 0.1250

[13, 16.9] 14 0.1750

[17, 20.9] 25 0.3125

[21, 24.9] 17 0.2125

[25, 28.9] 9 0.1125

[29, 32.9] 2 0.0250

Total 80 1

Classes have a “break” to avoid ambiguity!
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Example 2: continuous numerical variables

It’s better to choose classes closed on the left (open on the right) or classes closed on the right (open on
the left):

Class fk f̂k

[5, 9[ 3 0.0375

[9, 13[ 10 0.1250

[13, 17[ 14 0.1750

[17, 21[ 25 0.3125

[21, 25[ 17 0.2125

[25, 29[ 9 0.1125

[29, 33[ 2 0.0250

Total 80 1

Class fk f̂k

]5, 9] 4 0.05

]9, 13] 9 0.1125

]13, 17] 15 0.1875

]17, 21] 24 0.3

]21, 25] 17 0.2125

]25, 29] 9 0.1125

]29, 33] 2 0.0250

Total 80 1
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Example 3: categorical variables

In Example 3, the “type of failure verified” variable is categorical and the data are already grouped in
classes:

Class fk f̂k

voltage fluctuations 6 0.125

instability of the control system 22 0.458

human error 13 0.271

instrument worn and not replaced 2 0.042

other causes 5 0.104

Total 48 1
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Cumulative frequency

Cumulative frequency is defined as a running total of frequencies, i.e., the sum of all previous frequencies
up to the current class. Cumulative frequencies are rapresented by a table of cumulative frequency
distribution. We can consider absolute, relative and percentage cumulative frequencies.

Example 1: cumulative frequency distribution

Class fk

0 1

1 6

2 10

3 12

4 6

5 4

6 0

7 0

8 1

Total 40

Class Absolute cum. freq. Relative cum. freq.

x ≤ 0 1 0.025

x ≤ 1 7 0.175

x ≤ 2 17 0.425

x ≤ 3 29 0.725

x ≤ 4 35 0.875

x ≤ 5 39 0.975

x ≤ 6 39 0.975

x ≤ 7 39 0.975

x ≤ 8 40 1
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Example 1: cumulative frequency distribution

Class fk

[0, 1] 7

[2, 3] 22

[4, 5] 10

[6, 7] 0

[8, 9] 1

Total 40

Class Absolute cum. freq. Relative cum. freq.

x ≤ 1 7 0.175

x ≤ 3 29 0.725

x ≤ 5 39 0.975

x ≤ 7 39 0.975

x ≤ 9 40 1
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Example 2: cumulative frequency distribution

Class fk

[5, 8.9] 3

[9, 12.9] 10

[13, 16.9] 14

[17, 20.9] 25

[21, 24.9] 17

[25, 28.9] 9

[29, 32.9] 2

Total 80

Class Absolute cum. freq. Relative cum. freq.

x ≤ 4.9 0 0

x ≤ 8.9 3 0.725

x ≤ 12.9 13 0.1625

x ≤ 16.9 27 0.3375

x ≤ 20.9 52 0.65

x ≤ 24.9 69 0.8625

x ≤ 28.9 78 0.975

x ≤ 32.9 80 1
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Example 2: cumulative frequency distribution

Class fk

]5, 9] 4

]9, 13] 9

]13, 17] 15

]17, 21] 24

]21, 25] 17

]25, 29] 9

]29, 33] 2

Total 80

Class Absolute cum. freq. Relative cum. freq.

x ≤ 5 0 0

x ≤ 9 4 0.05

x ≤ 13 13 0.1625

x ≤ 17 28 0.35

x ≤ 21 52 0.65

x ≤ 25 69 0.8625

x ≤ 29 78 0.975

x ≤ 33 80 1
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Example

Suppose we want to describe three different work organizations of 288 people, and the character we
record for each individual is the number of completed operations in a day. Our data consist of three lists
of 288 numbers.
Of course, it is quite difficult to compare the three organizations (in the following 3 slides we report the
data) and select the best one. We need a way to extract some synthetic information or graphical
representation of the data.

We can group the values in classes (this means that the interval between the minimum and maximum
value of each list is divided in a fixed number of subintervals) and compute the frequencies of each class.

Graphical representation of data

The frequencies, as well as the distribution of the values, can be graphically presented in various ways!
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Example: First Work Organization

{725, 724, 710, 724, 700, 724, 713, 692, 683, 712, 684, 707, 703, 691, 709, 702, 705, 715, 704, 705,
697, 725, 692, 719, 694, 717, 696, 707, 726, 703, 705, 712, 710, 697, 698, 694, 701, 715, 701, 707, 706,
701, 687, 708, 719, 713, 699, 702, 694, 708, 712, 704, 703, 687, 709, 693, 715, 707, 710, 700, 718, 702,
718, 705, 723, 718, 701, 698, 692, 684, 716, 710, 708, 707, 695, 726, 710, 709, 692, 707, 717, 709, 710,
718, 708, 720, 705, 714, 687, 707, 713, 708, 702, 686, 715, 696, 696, 711, 710, 715, 719, 717, 684, 705,
676, 695, 723, 707, 701, 692, 713, 700, 704, 726, 702, 706, 706, 700, 700, 687, 696, 694, 699, 709, 704,
704, 699, 706, 685, 713, 707, 690, 717, 721, 724, 704, 710, 697, 686, 713, 724, 688, 706, 715, 687, 702,
701, 708, 704, 705, 702, 701, 699, 699, 685, 712, 678, 706, 706, 695, 707, 718, 714, 698, 716, 714, 715,
702, 713, 710, 697, 711, 693, 697, 704, 714, 721, 703, 716, 706, 704, 717, 700, 692, 718, 699, 698, 690,
710, 703, 702, 719, 710, 725, 721, 713, 699, 703, 714, 707, 700, 716, 692, 719, 700, 709, 711, 702, 718,
712, 711, 691, 707, 714, 712, 698, 717, 714, 703, 709, 711, 704, 689, 712, 714, 711, 692, 720, 697, 698,
700, 689, 693, 707, 703, 712, 716, 713, 719, 712, 703, 705, 720, 704, 708, 712, 714, 713, 708, 696, 704,
699, 717, 695, 711, 697, 693, 701, 699, 697, 724, 713, 706, 705, 704, 707, 704, 719, 711, 700, 704, 706,
690, 703, 708, 694, 688, 703, 712, 722, 705, 700, 697, 697, 698, 705, 706, 694}
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Example: Second Work Organization

{695, 686, 694, 690, 713, 704, 693, 697, 723, 694, 690, 721, 683, 701, 718, 715, 738, 694, 720, 680,
698, 691, 714, 699, 695, 709, 729, 717, 710, 714, 706, 711, 697, 728, 704, 692, 683, 696, 713, 674, 689,
683, 708, 704, 725, 695, 690, 696, 678, 725, 683, 700, 699, 705, 679, 710, 698, 686, 706, 731, 719, 693,
684, 684, 703, 691, 717, 681, 693, 709, 714, 688, 712, 688, 697, 729, 695, 697, 717, 679, 736, 671, 695,
739, 698, 696, 714, 711, 701, 720, 708, 706, 672, 713, 683, 695, 693, 670, 712, 677, 756, 693, 709, 688,
695, 722, 706, 686, 690, 685, 686, 681, 716, 709, 704, 679, 686, 676, 718, 683, 689, 696, 687, 736, 699,
685, 712, 723, 676, 693, 700, 745, 715, 743, 692, 718, 705, 708, 700, 713, 681, 723, 700, 698, 671, 714,
687, 687, 687, 683, 671, 677, 696, 696, 714, 713, 671, 688, 675, 671, 692, 725, 708, 699, 682, 686, 704,
714, 685, 711, 732, 688, 704, 720, 708, 733, 703, 693, 680, 690, 708, 704, 685, 685, 694, 702, 738, 702,
696, 709, 701, 687, 703, 701, 702, 693, 691, 701, 705, 685, 711, 693, 684, 670, 697, 732, 687, 737, 716,
716, 685, 741, 691, 705, 721, 735, 690, 705, 693, 698, 678, 704, 710, 686, 689, 686, 698, 684, 687, 696,
719, 679, 696, 701, 721, 681, 705, 714, 713, 678, 690, 721, 699, 725, 709, 718, 705, 744, 704, 686, 691,
712, 673, 698, 717, 711, 670, 726, 694, 723, 701, 683, 716, 671, 712, 704, 699, 705, 727, 719, 686, 699,
717, 688, 711, 695, 709, 699, 705, 718, 682, 697, 694, 670, 694, 708, 692, 702}
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Example: Third Work Organization

{698, 737, 727, 725, 704, 706, 691, 747, 726, 722, 710, 710, 726, 733, 732, 702, 737, 701, 717, 731,
711, 729, 707, 752, 709, 696, 742, 716, 690, 709, 715, 715, 675, 704, 724, 749, 748, 742, 720, 705, 714,
716, 728, 722, 734, 701, 707, 688, 727, 724, 723, 739, 743, 720, 702, 710, 749, 735, 736, 713, 706, 746,
723, 710, 731, 705, 704, 758, 744, 740, 716, 704, 714, 728, 721, 707, 727, 720, 708, 717, 708, 730, 744,
759, 729, 752, 716, 753, 697, 745, 712, 721, 722, 740, 702, 721, 705, 698, 729, 697, 723, 722, 714, 694,
749, 743, 715, 712, 718, 730, 721, 720, 724, 720, 698, 716, 681, 712, 750, 728, 715, 698, 731, 733, 722,
708, 729, 718, 693, 698, 721, 705, 707, 713, 709, 737, 696, 715, 717, 739, 715, 729, 706, 731, 706, 700,
696, 719, 699, 692, 735, 733, 734, 704, 704, 723, 723, 714, 723, 702, 713, 716, 739, 748, 702, 704, 704,
705, 731, 710, 724, 721, 693, 717, 735, 730, 714, 706, 713, 729, 706, 720, 734, 728, 726, 684, 735, 734,
730, 713, 698, 730, 707, 732, 752, 706, 690, 700, 749, 710, 686, 712, 739, 703, 738, 705, 725, 703, 721,
725, 700, 710, 708, 719, 706, 706, 716, 747, 717, 715, 688, 732, 724, 710, 744, 721, 713, 709, 711, 746,
715, 740, 710, 719, 712, 719, 730, 715, 735, 712, 748, 695, 710, 726, 708, 713, 709, 729, 731, 717, 735,
705, 739, 692, 722, 725, 724, 728, 734, 709, 718, 717, 731, 714, 729, 702, 734, 724, 719, 735, 709, 734,
724, 705, 726, 726, 730, 734, 712, 730, 733, 700, 718, 702, 744, 727, 740, 701}
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Pie chart

A pie chart (or a circle chart) is a circular statistical graphic, which is divided into slices to illustrate
numerical proportion.
In this graph, the frequencies percentages are represented by circular sectors having amplitudes
proportional to the frequencies; by denoting with f the percentage frequency and with g the amplitude
in degrees, we have

f : 100 = g : 360.

The pie chart is best suited for percentage frequencies and non-numerical variables.
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Example: pie chart

Consider the number of students enrolled in the various years of a higher school (absolute frequencies)
and the corresponding percentage frequencies.

Class fk freq. %

1st year 187 19.00%

2nd year 214 21.75%

3rd year 225 22.86%

4th year 176 17.89%

5th year 182 18.50 %

total 984 100.00%

1st year

2nd year

3rd year

4th year

5th year
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Histograms

A histogram is a graph that provides a visual representation of the distribution of numerical data.

The histogram consists of adjacent rectangles, the bases of which are aligned on an oriented axis with a
unit of measurement. The first step is divide the entire range of values into a series of intervals (group
the values in classes) and then compute how many values fall into each interval (the absolute frequencies
of each class). The classes must be adjacent (the adjacency shows the continuity of data) and are often
(but not required to be) of equal size.
If the classes are of equal size, a rectangle is erected over the class with height proportional to the
absolute frequency. A histogram may also be normalized to display relative frequencies. It then shows
the proportion of cases that fall into each of several classes, with the sum of the heights equal to 1.
However, classes need not be of equal size; in that case, the erected rectangle has area proportional to
the frequency of cases in the class. Thus, the vertical axis is not the frequency but the frequency
density–number of cases per unit of the variable on the horizontal axis, i.e., the ratio between the
frequency of the class and the size of the class.
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Example 2: histogram

Class fk f̂k

]5, 9] 4 0.05

]9, 13] 9 0.1125

]13, 17] 15 0.1875

]17, 21] 24 0.3

]21, 25] 17 0.2125

]25, 29] 9 0.1125

]29, 33] 2 0.0250

Total 80 1
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Example: histogram

For the three work organizations, we have the following histograms:
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Frequency polygon

A frequency distribution can also be represented graphically with another type of graph: the frequency
polygon. This polygon is obtained by joining together the points having as x–coordinate the middle
value mk of each class and as y–coordinate the corresponding frequency value.

Frequency polygon

Class mk fk

]5, 9] 7 4

]9, 13] 11 9

]13, 17] 15 15

]17, 21] 19 24

]21, 25] 23 17

]25, 29] 27 9

]29, 33] 31 2
15 20 25 30

0

5

10

15

20

25

In blue the frequency polygon.
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Remark

Histograms are sometimes confused with bar charts. A histogram is used for continuous data, where the
classes represent ranges of data, while a bar chart provides a plot of categorical variables.

Bar chart

A bar chart is a graph that presents categorical or discrete data with rectangular bars with heights or
width proportional to the values that they represent. The bars can be plotted vertically or horizontally.
An axis of the graph shows the classes, and the other one represents the frequency of the classes. The
size of the classes is constant; the rectangular bars are are usually not adjacent and are equidistant from
each other. Some bar graphs present bars clustered in groups of more than one, showing the values of
more than one measured variable. When there is no natural ordering of the categories being compared,
bars on the chart may be arranged in any order.
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Example: Bar chart

Consider the number of students enrolled in the various years of a higher school (absolute frequencies)
and the corresponding percentage frequencies.

Class fk freq. %

1st year 187 19.00%

2nd year 214 21.75%

3rd year 225 22.86%

4th year 176 17.89%

5th year 182 18.50 %

total 984 100.00%
1st year 2nd year 3rd year 4th year 5th year
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Example 1: Bar chart

Class fk

0 1

1 6

2 10

3 12

4 6

5 4

6 0

7 0

8 1

Total 40
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Cumulative polygon

An absolute cumulative frequency distribution is represented with a graph called cumulative polygon; the
graph is obtained by plotting in the x-axis the upper limits of the classes and, for each of them, in y -axis
the cumulative frequency of the corresponding class, and then joining the points obtained.

Example 1: cumulative polygon

Class Absolute cum. freq.

x ≤ 0 1

x ≤ 1 7

x ≤ 2 17

x ≤ 3 29

x ≤ 4 35

x ≤ 5 39

x ≤ 6 39

x ≤ 7 39

x ≤ 8 40
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Example 2: cumulative polygon

Class Absolute cum. freq.

x ≤ 5 0

x ≤ 9 4

x ≤ 13 13

x ≤ 17 28

x ≤ 21 52

x ≤ 25 69

x ≤ 29 78

x ≤ 33 80
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Empirical distribution function

For relative cumulative frequency distributions, the graphical representation used (and that is important
in probability) is given by the empirical distribution function (or empirical cumulative distribution
function), say,

F (x) =
number of observations less or equal to x

total number of observations
,

i.e., it is the ratio between the absolute cumulative frequencies related to a value x and the number of
observations. It is a step function that jumps up by 1/N at each of the N data points.
We note that the cumulative relative frequencies coincide with the empirical distribution function
evaluated in the upper limits of the classes.
In other words, if {x1, . . . , xN} are the ordered observations with corresponding relative frequencies

f̂1, . . . , f̂N , the empirical distribution function che be written as

F (x) =


0 x < x1,

Fi =
∑i

j=i f̂j xi ≤ x < xi+1,

1 x ≥ xN ,

where Fi are the cumulative relative frequencies. In the plot, the x-axis represents the upper limits of the
classes and and the y -axis the cumulative relative frequencies of the corresponding classes.
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Example 1: empirical distribution function

Class Relative cum. freq.

x ≤ 0 0.025

x ≤ 1 0.175

x ≤ 2 0.425

x ≤ 3 0.725

x ≤ 4 0.875

x ≤ 5 0.975

x ≤ 6 0.975

x ≤ 7 0.975

x ≤ 8 1
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Example 2: empirical distribution function

Class Relative cum. freq.

x ≤ 5 0

x ≤ 9 0.05

x ≤ 13 0.1625

x ≤ 17 0.35

x ≤ 21 0.65

x ≤ 25 0.8625

x ≤ 29 0.975

x ≤ 33 1
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Example: empirical distribution function for the three work organizations

In blue, red, green, the first, second and third work organization, respectively.
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Box and Whiskers plot

The box and whiskers plot is a standardized way of displaying the dataset based on the five-number
summary: the minimum, the maximum, the median, the first and third quartiles.

The box and whiskers plot shows the minimum
(bottom horizontal segment) and maximum (top
horizontal segment) of data, as well as the first
quartile (the bottom basis of gray rectangle), the
median (the separator between the two gray
rectangles) and the third quartile (the top basis of
gray rectangle). The whiskers extending from the
box indicate variability outside the first and third
quartiles. The spacings in each subsection of the
box and whiskers plot indicate the degree of
dispersion (spread) and skewness of the data.
Outliers that differ significantly from the rest of the
dataset may be plotted as individual points beyond
the whiskers on the box-plot.
The third work organization seems to be the best
one.

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 37/134



Box and Whiskers Plot

It can be obtained if the data are numerical: in order to produce it we need to compute some synthetic
descriptors of our data.

Synthetic descriptors of numerical data

1 Mean, mode, variance, standard deviation, coefficient of variation, skewness, kurtosis.

2 Minimum, maximum, median, quartiles, interquartile range.

Let us concentrate first on the descriptors in red that serve to produce the box and whiskers plot.

Minimum

Given a list of N numbers {x1, x2, . . . , xN}, the minimum is the lowest value xk excluding any outliers.

Maximum

Given a list of N numbers {x1, x2, . . . , xN}, the maximum is the highest value xk excluding any outliers.
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Median

Given a list of N numbers {x1, x2, . . . , xN}, the median is the value xk such that half numbers are less
than xk and half numbers are greater than xk , i.e., the middle value, when those numbers are listed in
order from smallest to greatest.

Convention for median

Consider a list of N numbers {x1, x2, . . . , xN} ordered from smallest to greatest. Then,

if N is odd:
median({x1, x2, . . . , xN}) = x N+1

2
;

if N is even:

median({x1, x2, . . . , xN}) =
xN/2 + xN/2+1

2
.

Remark

We note that the median is a value such that

F (median) =
1

2
,

where F (x) is the empirical distribution function.
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Example

Consider the list {1, 4, 7, 12, 15}; the median is 7. Moreover, there is no number that leaves exactly 50%
of the observations to its left and to its right, in fact:

F (7) =
3

5
= 0.6.

Example

Consider the list {1, 4, 7, 9, 12, 15}; in this case, every value between 7 and 9 is the median: it is usual in
such cases to take as median the arithmetic mean between 7 and 9, that is

median({1, 4, 7, 9, 12, 15}) = 7 + 9

2
= 8.

The median leaves exactly 50% of the observations to its left and to its right, in fact:

F (8) =
3

6
= 0.5.
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Properties of the median

if x1 = · · · = xN = a, then
median({x1, . . . , xN}) = a;

min({x1, . . . , xN}) ≤ median({x1, . . . , xN}) ≤ max({x1, . . . , xN});
given a list of N numbers {x1, . . . , xN} ordered from smallest to greatest, and let
m = median({x1, . . . , xN}) be its median. Then:

N∑
k=1

|xk −m| ≤
N∑

k=1

|xN − a|, a constant,

i.e., the median is the number that minimizes the sum of the absolute values of the differences
between the data and a costant;

the median is a robust descriptor, since it is not very sensitive to the presence of outliers;

the median of a transformation that preserves the ordering of the data, that is an monotonically
increasing transformation, coincides with the transformation of the median; if we define such a
transformation f (·), with

yk = f (xk), k = 1, . . . ,N,

then
median({y1, . . . , yN}) = f (median({x1, . . . , xN})) ;
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Grouped data: approximation of the median

Suppose we do not know the values of the statistical units but only the corresponding absolute
frequencies fk associated to the classes ]ak−1, ak ], where k = 1, . . . ,M.
The median cannot be computed exactly!
In these situations, a suitable choice is using a linear approximation:

median ≈ aj−1 + (aj − aj−1)
1/2− F (aj−1)

F (aj)− F (aj−1)
,

where median ∈ ]aj−1, aj ], and F is the empirical distribution function.
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Example: grouped data

Consider the classes ]ak−1, ak ], where k = 1, . . . , 5, and the corresponding absolute frequencies fk as
follows:

Class fk

]0, 1] 1

]1, 2] 4

]2, 3] 4

]3, 4] 2

]4, 5] 1

We have N = 12. The median should be chosen between the 6−th and 7−th observation.
Therefore, the median belongs to the class ]2, 3], i.e., aj−1 = 2 and aj = 3.
Moreover, we have

F (2) =
5

12
= 0.42, F (3) =

9

12
= 0.75.

Then, by using the linear approximation for the median:

median ≈ aj−1 + (aj − aj−1)
1/2− F (aj−1)

F (aj)− F (aj−1)
= 2 + (3− 2)

0.5− 0.42

0.75− 0.42
= 2.25.
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Example: grouped data

Consider the classes ]ak−1, ak ], where k = 1, . . . , 5, and the corresponding absolute frequencies fk as
follows:

Class fk

]0, 1] 1

]1, 2] 4

]2, 3] 4

]3, 4] 2

]4, 5] 1

We have N = 12. The median should be chosen between the 6−th and 7−th observation.
Therefore, the median belongs to the class ]2, 3].
Alternatively, we can suppose that the four data belonging to the class ]2, 3] are equally distributed and,
for example, are equal to 2.25, 2.5, 2.75, 3.
Under this assumption, the 6−th and 7−th observation are equal to 2.25 and 2.5, respectively.
Then, we can compute the median as

median =
2.25 + 2.5

2
= 2.375.
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Quantiles

In statistics, quantiles are cut points dividing the observations in a sample in the same way.
A p–quantile, where p ∈ [0, 1], is number that is larger 100 · p% of the observed data and smaller of the
remaining 100 · (1− p)%.
By using the empirical distribution function F , the p-quantile can be defined as

Qp = inf{x : F (x) ≥ p}.

First Quartile

Given a list of N numbers {x1, x2, . . . , xN}, the first quartile is the value xk such that 25% of numbers
are less than xk and 75% of numbers are greater than xk , i.e., the middle number between the smallest
number (minimum) and the median. It is the median of the lower half of the dataset!

Third Quartile

Given a list of N numbers {x1, x2, . . . , xN}, the third quartile is the value xk such that 75% of numbers
are less than xk and 25% of numbers are greater than xk , i.e., the middle value between the median and
the highest number (maximum). It is the median of the upper half of the dataset!

Remark

The median is just the Second Quartile!
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Interquartile Range

The Interquartile Range (IQR) is the difference between the third and first quartile. It represents a
measure of how the data are concentrated around the median.

Quartiles and outliers

There are methods by which to check for outliers in the discipline of statistics and statistical analysis.
The basic idea of descriptive statistics, when encountering an outlier, is that we have to explain by
further analysis the cause or origin of the outlier. In the case of quartiles, the Interquartile Range (IQR)
may be used to characterize the data when there may be extremities that skew the data. The various
quartiles are robust descriptors since they are scarcely affected by adding extremal values to the data
(data greater than the maximum or less than the minimum).
There is also a mathematical method to determine “fences”, i.e., upper and lower bounds from which to
check for outliers. After determining the first and third quartiles, and the interquartile range, then fences
are computed by using the following formula:

Lower fence = Q1 − 1.5 · IQR,
Upper fence = Q3 + 1.5 · IQR,

where Q1 and Q3 are the first and third quartiles, respectively. The lower fence is the lower limit and the
upper fence is the upper limit of data, and any data lying outside these defined bounds can be
considered an outlier.
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Example without outliers: box and whiskers plot

Let us consider the list
{57, 57, 57, 58, 63, 66, 66, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81}.

minimum = 57; Q2 = median = 70; maximum = 81;
Q1 = 66; Q3 = 75; IQR = Q3 − Q1 = 9;
Lower fence = Q1 − 1.5 · IQR = 66− 13.5 = 52.5;
Upper fence = Q3 + 1.5 · IQR = 75 + 13.5 = 88.5.
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Example with outliers: box and whiskers plot

Let us consider the list
{52, 57, 57, 58, 63, 66, 66, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 89}.

minimum = 52; Q2 = median = 70; maximum = 89;
Q1 = 66; Q3 = 75; IQR = Q3 − Q1 = 9;
Lower fence = Q1 − 1.5 · IQR = 66− 13.5 = 52.5;
Upper fence = Q3 + 1.5 · IQR = 75 + 13.5 = 88.5.
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Computing methods for quartiles

Given a list of N numbers {x1, x2, . . . , xN}, there is no universal agreement on selecting the quartile
values.

Method 1

1 Use the median to divide the ordered list into two-halves. Then:

if there is an odd number of elements in the original ordered list, do not include the median in
either half;
if there is an even number of elements in the original ordered list, split this numbers set exactly
in half;

2 the first quartile is the median of the lower half of the numbers, whereas the third quartile is the
median of the upper half of the numbers.
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Computing methods for quartiles

Example: Method 1 – odd number of elements

Consider the list {6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}. We have N = 11.
The median

Q2 = median({6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}) = 40,

must not be included in the two halves, which are

{6, 7, 15, 36, 39}, {41, 42, 43, 47, 49}.

The first quartile is the median of the lower half:

Q1 = median({6, 7, 15, 36, 39}) = 15.

The third quartile is the median of the upper half:

Q3 = median({41, 42, 43, 47, 49}) = 43.
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Computing methods for quartiles

Example: Method 1 – even number of elements

Consider the list {7, 15, 36, 39, 40, 41}. We have N = 6.
The median

Q2 = median({7, 15, 36, 39, 40, 41}) = 36 + 39

2
= 37.5.

The list must be divided in two halves, which are

{7, 15, 36}, {39, 40, 41}.

The first quartile is the median of the lower half:

Q1 = median({7, 15, 36}) = 15.

The third quartile is the median of the upper half:

Q3 = median({39, 40, 41}) = 40.
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Computing methods for quartiles

Method 2

1 Use the median to divide the ordered list into two-halves. Then:

if there is an odd number of elements in the original ordered list, include the median in both
halves;
if there is an even number of elements in the original ordered list, split this data set exactly in
half;

2 the first quartile is the median of the lower half of the numbers, whereas the third quartile is the
median of the upper half of the numbers.
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Computing methods for quartiles

Example: Method 2 – odd number of elements

Consider the list {6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}. We have N = 11.
The median

Q2 = median({6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}) = 40,

must be included in the two halves, which are

{6, 7, 15, 36, 39, 40}, {40, 41, 42, 43, 47, 49}.

The first quartile is the median of the lower half:

Q1 = median({6, 7, 15, 36, 39, 40}) = 15 + 36

2
= 25.5.

The third quartile is the median of the upper half:

Q3 = median({40, 41, 42, 43, 47, 49}) = 42 + 43

2
= 42.5.

Example: Method 2 – even number of elements

In the case of list with an even number of elements, Method 1 and Method 2 provide the same results.
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Computing methods for quartiles

Method 3

1 Compute the median;

if there is an odd number of elements in the original ordered list, go to step 2 or 3;
if there is an even number of elements in the original ordered list, include the median as new
number in the original list;

2 if there are N = (4n + 1) numbers, then the first quartile is 25% of the n-th number plus 75% of
the (n+ 1)-th number, whereas the third quartile is 75% of the (3n+ 1)-th number plus 25% of the
(3n + 2)-th number, i.e.,

Q1 = 0.25 · xn + 0.75 · xn+1, Q3 = 0.75 · x3n+1 + 0.25 · x3n+2;

3 if there are N = (4n+ 3) numbers, then the first quartile is 75% of the (n+ 1)-th number plus 25%
of the (n + 2)-th number, whereas the third quartile is 25% of the (3n + 2)-th number plus 75% of
the (3n + 3)-th number, i.e.,

Q1 = 0.75 · xn+1 + 0.25 · xn+2, Q3 = 0.25 · x3n+2 + 0.75 · x3n+3.
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Computing methods for quartiles

Example: Method 3 – odd number of elements

Consider the list {6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}. We have N = 11.
The median is

Q2 = median({6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}) = 40.

There are N = (4n + 3) numbers, with n = 2. In fact, 11 = 4 · 2 + 3.
The first quartile is

Q1 = 0.75 · xn+1 + 0.25 · xn+2 = 0.75 · x3 + 0.25 · x4 = 0.75 · 15 + 0.25 · 36 = 20.25.

The third quartile is

Q3 = 0.25 · x3n+2 + 0.75 · x3n+3 = 0.25 · x8 + 0.75 · x9 = 0.25 · 42 + 0.75 · 43 = 42.75.
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Computing methods for quartiles

Example: Method 3 – even number of elements

Consider the list {7, 15, 36, 39, 40, 41}. We have N = 6.
The median

Q2 = median({7, 15, 36, 39, 40, 41}) = 36 + 39

2
= 37.5.

and we include it as a new number in the list, i.e., we consider the list

{7, 15, 36, 37.5, 39, 40, 41}.

There are N = (4n + 3) numbers, with n = 1. In fact, 7 = 4 · 1 + 3.
The first quartiles is

Q1 = 0.75 · xn+1 + 0.25 · xn+2 = 0.75 · x2 + 0.25 · x3 = 0.75 · 15 + 0.25 · 36 = 20.25.

The third quartile is

Q3 = 0.25 · x3n+2 + 0.75 · x3n+3 = 0.25 · x5 + 0.75 · x6 = 0.25 · 39 + 0.75 · 40 = 39.75.
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Computing methods for quartiles

Method 4: large datasets. . .

If we have an ordered large datasets {x1, . . . , xN}, we can use the empirical quantile function to compute
the p–th empirical quantile:

q(p) = xk + α (xk+1 − xk) ,

where k = [p(N + 1)], [·] denotes the integer part of a number, and α = p(N + 1)− k.

Example: Method 4 – Empirical quantiles

Let us consider the list
{52, 57, 57, 58, 63, 66, 66, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 89}.

We have N = 24 data points. Then, compute median, first and third quartiles.

Median: Q2 = q(0.5) = x12 + (0.5 · 25− 12) · (x13 − x12) = 70 + (0.5 · 25− 12)(70− 70) = 70.

First quartile: Q1 = q(0.25) = x6 + (0.25 · 25− 6) · (x7 − x6) = 66 + (0.25 · 25− 6)(66− 66) = 66.

Third quartile: Q3 = q(0.75) = x18 + (0.75 · 25− 18) · (x19 − x18) = 75 + (0.75 · 25− 18)(75− 75) = 75.
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Computing methods for quartiles

Example: Method 4 – odd number of elements

Consider the list {6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}. We have N = 11.

For p = 0.5, we have k = [p(N + 1)] = [0.5 · 12] = [6] = 6 and α = p(N + 1)− k = 0.5 · 12− 6 = 0,
then the median is

Q2 = q(0.5) = x6 + α · (x7 − x6) = 40 + 0 · (41− 40) = 40.

For p = 0.25, we have k = [p(N + 1)] = [0.25 · 12] = [3] = 3 and α = p(N + 1)− k = 0.25 · 12− 3 = 0,
then the first quartile is

Q1 = q(0.25) = x3 + α · (x4 − x3) = 15 + 0 · (36− 15) = 15.

For p = 0.75, we have k = [p(N + 1)] = [0.75 · 12] = [9] = 9 and α = p(N + 1)− k = 0.75 · 12− 9 = 0,
then the third quartile is

Q3 = q(0.75) = x9 + α · (x10 − x9) = 43 + 0 · (47− 43) = 43.
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Computing methods for quartiles

Example: Method 4 – even number of elements

Consider the list {7, 15, 36, 39, 40, 41}. We have N = 6.

For p = 0.5, we have k = [p(N + 1)] = [0.5 · 7] = [3.5] = 3 and α = p(N + 1)− k = 0.5 · 7− 3 = 0.5,
then the median is

Q2 = q(0.5) = x3 + α · (x4 − x3) = 36 + 0.5 · (39− 36) = 37.5.

For p = 0.25, we have k = [p(N + 1)] = [0.25 · 7] = [1.75] = 1 and
α = p(N + 1)− k = 0.25 · 7− 1 = 0.75, then the first quartile is

Q1 = q(0.25) = x1 + α · (x2 − x1) = 7 + 0.75 · (15− 7) = 13.

For p = 0.75, we have k = [p(N + 1)] = [0.75 · 7] = [5.25] = 5 and
α = p(N + 1)− k = 0.75 · 7− 5 = 0.25, then the third quartile is

Q3 = q(0.75) = x5 + α · (x6 − x5) = 40 + 0.25 · (41− 40) = 40.25.
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Computing methods for quartiles

Example: summary of computing methods for quartiles – odd number of elements

Consider the list {6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49}.

Method 1 Method 2 Method 3 Method 4

Q1 15 25.5 20.25 15

Q2 40 40 40 40

Q3 43 42.5 42.75 43

Example: summary of computing methods for quartiles – even number of elements

Consider the list {7, 15, 36, 39, 40, 41}.

Method 1 Method 2 Method 3 Method 4

Q1 15 15 20.25 13

Q2 37.5 37.5 37.5 37.5

Q3 40 40 39.75 40.25
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Grouped data: approximation of the quantiles

Suppose we do not know the values of the statistical units but only the corresponding absolute
frequencies fk associated to the classes ]ak−1, ak ], where k = 1, . . . ,M.
For p–quantiles, a suitable choice is using a linear approximation:

Qp ≈ aj−1 + (aj − aj−1)
p − F (aj−1)

F (aj)− F (aj−1)
,

where the p–quantiles are in the class ]aj−1, aj ], and F is the empirical distribution function.

Remark

A general strategy is to assume that the data belonging to the class ]aj−1, aj ] are equal to the

central value mj =
aj−1 + aj

2
, and then proceed as usual.

Another strategy is to divide the class ]aj−1, aj ] in sub-classes as many as are the corresponding
frequencies, and the proceed as usual.

Contexts in which data are already grouped into classes are very rare.

If the original data are available, the indices can be exactly computed, without needing
approximations.

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 61/134



Example: grouped data – approximation of the quantiles

Consider the classes ]ak−1, ak ], where k = 1, . . . , 5, and the corresponding absolute frequencies fk as
follows:

Class fk

]0, 1] 1

]1, 2] 4

]2, 3] 4

]3, 4] 2

]4, 5] 1

We have N = 12. The first quartile should be chosen between the 3−th and 4−th observation.
Therefore, the first quartile belongs to the class ]1, 2], i.e., aj−1 = 1 and aj = 2.
Moreover, we have

F (1) =
1

12
= 0.09, F (2) =

5

12
= 0.42.

Then:

Q0.25 ≈ aj−1 + (aj − aj−1)
0.25− F (aj−1)

F (aj)− F (aj−1)
= 1 + (2− 1)

0.25− 0.09

0.42− 0.09
= 1.5.
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. . . Example: grouped data – approximation of the quantiles

Consider the classes ]ak−1, ak ], where k = 1, . . . , 5, and the corresponding absolute frequencies fk as
follows:

Class fk

]0, 1] 1

]1, 2] 4

]2, 3] 4

]3, 4] 2

]4, 5] 1

We have N = 12. The third quartile should be chosen between the 9−th and 10−th observation.
Therefore, the third quartile belongs to the class ]3, 4], i.e., aj−1 = 3 and aj = 4.
Moreover, we have

F (3) =
9

12
= 0.75, F (4) =

11

12
= 0.92.

Then:

Q0.75 ≈ aj−1 + (aj − aj−1)
0.75− F (aj−1)

F (aj)− F (aj−1)
= 3 + (4− 3)

0.75− 0.75

0.92− 0.75
= 3.
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Mean

For numerical data we can compute the arithmetic mean:

µ = mean({x1, . . . , xN}) =
1

N

N∑
k=1

xk ,

that is a measure of the central tendency of data.

Properties of the mean

if x1 = · · · = xN = a, then

µ =
1

N

N∑
k=1

xk =
Na

N
= a;

min({x1, . . . , xN}) ≤ µ ≤ max({x1, . . . , xN});
the sum of the differences between the data from the mean (the so-called deviations) is equal to
zero:

N∑
k=1

(xk − µ) = 0;

the arithmetic mean constitutes the center of mass of the distribution of frequency!
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Properties of the mean

∀λ ∈ R, we have N∑
k=1

(xk − λ)2 =
N∑

k=1

(xk − µ)2 + N(µ− λ)2;

in fact, N∑
k=1

(xk − λ)2 =
N∑

k=1

(xk − λ+ µ− µ)2 =
N∑

k=1

((xk − µ) + (µ− λ))2 =

=
N∑

k=1

((xk − µ)2 + (µ− λ)2 + 2(xk − µ)(µ− λ)) =

=
N∑

k=1

(xk − µ)2 +
N∑

k=1

(µ− λ)2 + 2(µ− λ)
N∑

k=1

(xk − µ) =

=
N∑

k=1

(xk − µ)2 + N(µ− λ)2 + 2(µ− λ) · 0;

the sum of squares of the deviations from a constant is minimal if and only if the constant is set
equal to the mean; in fact,

N∑
k=1

(xk − λ)2 >
N∑

k=1

(xk − µ)2, if λ ̸= µ;
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Properties of the mean

the mean remains unchanged if a subset of data is replaced with theirs partial mean, i.e.,

mean({x1, . . . , xk , xk+1, . . . , xN}) = mean({m, . . . ,m, xk+1, . . . , xN}),

where

m = mean({x1, . . . , xk}) =
1

k

k∑
i=1

xi .

In fact,

mean({m, . . . ,m,xk+1, . . . , xN}) =
1

N

 1

k

k∑
i=1

xi + · · ·+ 1

k

k∑
i=1

xi︸ ︷︷ ︸
k times

+
N∑

i=k+1

xi

 =

=
1

N

(
k · 1

k

k∑
i=1

xi +
N∑

i=k+1

xi

)
=

1

N

(
k∑

i=1

xi +
N∑

i=k+1

xi

)
=

1

N

N∑
i=1

xi ;

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 66/134



Properties of the mean

if we apply to the data a linear transformation, say if we define

yk = axk + b, a, b constants, k = 1, . . . ,N,

then

µ = mean({y1, . . . , yN}) =
1

N

N∑
k=1

yk = aµ+ b,

i.e., the arithmetic mean of a linear transformation applied to data is equal to the linear
transformation applied to the arithmetic mean of data;

the mean of a non-linear transformation of data is, in general, not equal to the non-linear
transformation applied to the mean; if we define f (·) a non-linear transformation such that

yk = f (xk), k = 1, . . . ,N,

then

mean({y1, . . . , yN}) =
1

N

N∑
k=1

f (xk) ̸= f

(
1

N

N∑
k=1

xk

)
= f (mean({x1, . . . , xN})) ;
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Properties of the mean: recursive formula

Given the list {x1, . . . , xN}, and let

µk = mean({x1, . . . , xk}) =
1

k

k∑
i=1

xi

be the arithmetic mean of {x1, . . . , xk} with 1 ≤ k < N.
Then,

µk+1 = mean({x1, . . . , xk , xk+1}) =
k

k + 1
µk +

1

k + 1
xk+1.

Proof.

µk+1 =
1

k + 1

k+1∑
i=1

xi =
k

k + 1

1

k

(
k∑

i=1

xi + xk+1

)
=

k

k + 1

(
1

k

k∑
i=1

xi

)
+

1

k + 1
xk+1.

Example

Let µ9 = 26 and x10 = 30. Compute µ10.

µ10 =
9

10
26 +

30

10
= 26.4
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Grouped data: mean of a frequency distribution

Given a list of N numbers {x1, . . . , xN}, suppose we collect M ≤ N distinct values xk (k = 1, . . . ,M)
with the corresponding k-th absolute frequency fk . Then, the mean is

µ = mean({x1, . . . , xN}) =

M∑
k=1

xk fk

M∑
k=1

fk

=
1

N

M∑
k=1

xk fk .

If we consider the relative frequencies f̂k =
fk
N
, we have

µ = mean({x1, . . . , xN}) =

M∑
k=1

xk fk

M∑
k=1

fk

=
1

N

M∑
k=1

xk fk =
M∑
k=1

xk f̂k .
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Example 1: grouped data – mean of a frequency distribution

Consider the collected values xk and the corresponding absolute frequencies fk as follows:

xk fk

1 2

2 7

3 1

4 10

The mean is

µ =
1

N

M∑
k=1

xk fk =
1

20
(1 · 2 + 2 · 7 + 3 · 1 + 4 · 10) = 59

20
= 2.95
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Example 2: grouped data – mean of a frequency distribution

Consider the collected values xk and the corresponding relative frequencies f̂k as follows:

xk f̂k

-1 0.1

0 0.2

1 0.5

2 0.2

The mean is

µ =
M∑
k=1

xk f̂k = −1 · 0.1 + 0 · 0.2 + 1 · 0.5 + 2 · 0.2 = 0.8
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Grouped data: approximation of the mean

Suppose we do not know the values xk associated to the statistical units but we have only the
corresponding absolute frequencies fk associated to the classes ]ak−1, ak ], where k = 1, . . . ,M.
The mean cannot be computed exactly!
In these situations, an approximation often used is

µ = mean({x1, . . . , xN}) ≈

M∑
k=1

mk fk

M∑
k=1

fk

=
1

N

M∑
k=1

mk fk ,

where mk is the middle value of the k–th class, i.e., mk =
ak−1 + ak

2
.

If we consider the relative frequencies f̂k = fk
N , we have

µ = mean({x1, . . . , xN}) ≈
1

N

M∑
k=1

mk fk =
M∑
k=1

mk f̂k .
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Example: grouped data – approximation of the mean

Consider the classes ]ak−1, ak ], where k = 1, . . . , 4, with the corresponding middle values mk and
absolute frequencies fk as follows:

Class mk fk

]0, 1] 0.5 1

]1, 2] 1.5 4

]2, 3] 2.5 4

]3, 4] 3.5 2

then, the mean can be approximated as

µ ≈ 1

11

4∑
k=1

mk fk =
0.5 · 1 + 1.5 · 4 + 2.5 · 4 + 3.5 · 2

11
≃ 2.14.
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Example: grouped data – approximation of the mean

Consider the classes ]ak−1, ak ], where k = 1, . . . , 4, with the corresponding middle values mk and relative

frequencies f̂k as follows:

Class mk f̂k

]−1, 1] 0 0.1

]1, 4] 2.5 0.4

]4, 7] 5.5 0.4

]7, 9] 8 0.1

then, the mean can be approximated as

µ ≈
4∑

k=1

mk f̂k = 0 · 0.1 + 2.5 · 0.4 + 5.5 · 0.4 + 8 · 0.1 = 4.
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Weighted mean

Given a list of N numbers {x1, x2, . . . , xN} with the corresponding non-negative weights
{m1,m2, . . . ,mN}, we can compute the weighted mean:

µ({x1, . . . , xN}) =

N∑
i=1

mixi

N∑
i=1

mi

.

Therefore, data elements with a high weight contribute more to the weighted mean than do elements
with a low weight. The weights cannot be negative.
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Example: weighted mean

Compute the grade mean for university exams associated with a variable number of credits (weights).

Grade CFU

24 8

25 6

28 8

26 12

The weighted mean is:

µ({x1, x2, x3, x4}) =

4∑
i=1

mixi

4∑
i=1

mi

=
1

34
(8 · 24 + 6 · 25 + 8 · 28 + 12 · 26) = 25.82,

that is different from the arithmetic mean µ =
1

4

4∑
i=1

xi =
24 + 25 + 28 + 26

4
= 25.75!
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Geometric mean

Given a list of N numbers {x1, x2, . . . , xN}, with xk > 0 ∀k = 1, . . . ,N, we can compute the geometric
mean G:

G({x1, x2, . . . , xN}) = N
√
x1 · x2 · . . . · xN =

(
ΠN

k=1xk
) 1

N ,

which indicates the central tendency or typical value of a set of numbers by using the product of their
values.

Geometric mean: properties

min({x1, . . . , xN}) ≤ G ≤ max({x1, . . . , xN}).
G ≤ µ, where µ is the arithmetic mean.

G({λx1, . . . , λxN}) = λG({x1, . . . , xN}) ∀λ > 0.

G({x1, . . . , xN}) =
(
ΠN

k=1xk
) 1

N = exp
(

1
N

∑N
k=1 ln(xk)

)
.

The geometric mean is mostly used where the values considered are multiplied together and not
added. Typical examples are growth rates, such as interest rates or inflation rates.

Small values (with respect to the arithmetic mean) are more influential in the geometric mean than
large values.
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Example: geometric mean

Suppose we measure inflation on an annual scale, and that over three years subsequent, we have
respectively inflation rates of 2.5%, 2%, 1.5%, respectively. It is correct to say that the mean inflation
over these three years was 2% (the arithmetic mean of the three data)?
The answer is no.
In fact, in this case, the price of a good whose initial price was p would be, after three years,

p · (1.02) · (1.02) · (1.02) = p · 1.061208.

Actually, after a year the price becomes p1 = p · (1.025); at the end of the second year, the price
increased by 2%, i.e., p2 = p1 · (1.02). Similarly, at the end of the third year the price p3 = p2 · (1.015).
Then, after three years, the price becomes

p · (1.025) · (1.02) · (1.015) = p · 1.0611825.

This result can be recovered by using the geometric mean, i.e.,

G({x1, x2, x3}) = 3
√
1.025 · 1.02 · 1.015 = 1.01999183.

Then, the final price is given by

p ·G ·G ·G = p · 1.019991833 = p · 1.0611825.
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Harmonic mean

Given a list of N numbers {x1, x2, . . . , xN}, we can compute the harmonic mean H:

H({x1, x2, . . . , xN}) =
N

1

x1
+

1

x2
+ · · ·+ 1

xN

=

(
1

N

N∑
k=1

1

xk

)−1

,

that is the reciprocal of the arithmetic mean of the reciprocals of the given set of observations.

Harmonic mean: properties

min({x1, . . . , xN}) ≤ H ≤ max({x1, . . . , xN}).
If xk > 0 ∀k = 1, . . . ,N, then

H ≤ G ≤ µ,

where G and µ are the geometric and arithmetic mean, respectively.

H({λx1, . . . , λxN}) = λH({x1, . . . , xN}) ∀λ ∈ R.
The harmonic mean is sometimes appropriate for situations when an average rate is desired.

Since the harmonic mean of a list of numbers tends strongly toward the least elements of the list, it
tends (compared to the arithmetic mean) to mitigate the impact of large outliers and aggravate the
impact of small ones.
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Example: harmonic mean

Suppose we have two cars that drive for 10 km and 20 km, respectively, with one liter of fuel. It may
seems that the mean distance is 15Km/L (the arithmetic mean), but does it make sense? Suppose we
have to travel 100 km with both cars. By relying on the mean distance as has been defined, we need

2 · number of Kilometers

mean distance
= 2 · 100

15
Liters = 13.333 Liters.

Obviously wrong answer, since we need 10 L for the first car and 5 L for the second, with a total of 15 L.
So the only one knowledge of the mean distance defined by the arithmetic mean, leads us to make
mistakes. Now, consider the mean distance by means of the harmonic mean:

H({x1, x2}) =

(
1

2

2∑
k=1

1

xk

)−1

=

(
1
10 + 1

20

2

)−1

= 13.333 Km/L.

Therefore, in order to travel 100Km with the two cars, we need

2 · number of Kilometers

mean distance
= 2 · 100

13.333
Liters = 15 Liters.
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Chisini mean

Given a list of N numbers {x1, . . . , xN} and a function f (x1, . . . , xN) depending on the N variables
entering the list, the Chisini mean, or the mean of numbers xi with respect to f , can be defined as the
unique M, if there exists, such that

f (x1, . . . , xN) = f (M, . . . ,M).

Properties

The Chisini mean is that value that does not alter the value of the function f when substituting the
constant value M to the variables xk (k = 1, . . . ,N).

The arithmetic, geometric and harmonic means are all Chisini means.

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 81/134



Example: the arithmetic mean is a Chisini mean

If we define the function f as

f (x1, x2, . . . , xN) = x1 + x2 + · · ·+ xN ,

the mean of numbers xi with respect to f will be the arithmetic mean!
In fact, from

f (x1, . . . , xN) = f (M, . . . ,M),

we have
x1 + x2 + · · ·+ xN = M+M+ · · ·+M︸ ︷︷ ︸

N times

= NM,

and it follows that

M =
x1 + x2 + · · ·+ xN

N
.
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Example: the geometric mean is a Chisini mean

If we define the function f as
f (x1, x2, . . . , xN) = x1 · x2 · . . . · xN ,

with xk > 0 ∀k = 1, . . . ,N, the mean of numbers xi with respect to f will be the geometric mean!
In fact, from

f (x1, . . . , xN) = f (M, . . . ,M),

we have
x1 · x2 · . . . · xN = M ·M · . . . ·M︸ ︷︷ ︸

N times

= MN ,

and it follows that
M = N

√
x1 · x2 · . . . · xN .
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Example: the harmonic mean is a Chisini mean

If we define the function f as

f (x1, x2, . . . , xN) =
1

x1
+

1

x2
+ · · ·+ 1

xN
=

N∑
k=1

1

xk
,

the mean of numbers xi with respect to f will be the harmonic mean!
In fact, from

f (x1, . . . , xN) = f (M, . . . ,M),

we have
1

x1
+

1

x2
+ · · ·+ 1

xN
=

1

M
+

1

M
+ · · ·+ 1

M︸ ︷︷ ︸
N times

=
N

M
,

and it follows that

M =
N

1

x1
+

1

x2
+ · · ·+ 1

xN

=

(
1

N

N∑
k=1

1

xk

)−1

.
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The mean is not a robust indicator

Consider the data {4, 4.9, 5, 5.3, 5.7, 6}; their mean is µ = 5.15.
If we add another value to the data, for instance 3.2, or 8, the mean changes:

mean({3.2, 4, 4.9, 5, 5.3, 5.7, 6}) = 4.871,

mean({4, 4.9, 5, 5.3, 5.7, 6, 8}) = 5.557.

The mean alone is not sufficient!

The mean of a set of data is a useful descriptor but cannot be used as the only synthetic descriptor. In
fact, if you consider the following two sets of data

{3, 3, 3, 3, 3, 3, 3}, and {2.6, 2.7, 2.8, 3, 3.2, 3.3, 3.4},

they share the same mean,
mean({3, 3, 3, 3, 3, 3, 3}) = 3,

mean({2.6, 2.7, 2.8, 3, 3.2, 3.3, 3.4}) = 3;

each element of the first set of data is equal to the mean, whereas the elements of the second set of
data are distributed around the mean.
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Dispersion of data around the mean

In addition to the mean we need a descriptor for the dispersion of the data around the mean.

Variance

Given a list of N numbers {x1, x2, . . . xN} with mean µ, their variance, denoted by σ2, is

σ2 =
1

N

N∑
k=1

(xk − µ)2 =
1

N

N∑
k=1

(x2k + µ2 − 2µxk) =

=
1

N

N∑
k=1

x2k +
1

N

N∑
k=1

µ2 − 2µ

N

N∑
k=1

xk =

=
1

N

N∑
k=1

x2k +
Nµ2

N
− 2µ

N

N∑
k=1

xk =
1

N

N∑
k=1

x2k + µ2 − 2µ2 =

=
1

N

N∑
k=1

x2k − µ2.

Therefore, the variance is the difference between the arithmetic mean of the squared data and the square
of the arithmetic mean.
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Example: variance

Let us consider the list {1, 2, 3, 5}. Compute the variance.
We have N = 4, and

σ2 = variance({1, 2, 3, 5}) = 1

4

(
4∑

k=1

x2k

)
− µ2.

The arithmetic mean is

µ = mean({1, 2, 3, 5}) = 1

4

4∑
k=1

xk =
1 + 2 + 3 + 5

4
= 2.75.

The arithmetic mean of the squared data is

1

4

4∑
k=1

x2k =
1 + 4 + 9 + 25

4
= 9.75.

Then, the variance is
σ2 = 9.75− 2.752 = 9.75− 7.56 = 2.19.
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Unbiased sample variance

Using probability, a more correct definition of variance when the data refer to a sample is

σ̃2 =
1

N − 1

N∑
k=1

(xk − µ)2,

that is called unbiased sample variance, and the use of the term N − 1 is called Bessel’s correction.

Rough justification

Since we use in the definition of the variance the mean, the N data are not independent (that is, the
data have N − 1 degrees of freedom).
However, there is a rigorous justification based on the necessity of inferring the variance of a population
from the variation of a random sample extracted from the population. In fact, in many practical
situations, the true variance of a population is not known a priori and must be computed somehow.
When dealing with extremely large populations, it is not possible to count every object in the population,
so the computation must be performed on a sample of the population. Sample variance can also be
applied to the estimation of the variance of a continuous distribution from a sample of that distribution.
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Correct estimation of variance

σ̃2 =
1

N − 1

N∑
k=1

(xk − µ)2 =
1

N − 1

N∑
k=1

(x2k + µ2 − 2µxk) =

=
1

N − 1

N∑
k=1

x2k +
1

N − 1

N∑
k=1

µ2 − 2µ

N − 1

N∑
k=1

xk =

=
1

N − 1

N∑
k=1

x2k +
N

N − 1
µ2 − 2N

N − 1
µ2 =

=
N

N − 1

(
1

N

N∑
k=1

x2k

)
− N

N − 1
µ2 =

=
N

N − 1

(
1

N

N∑
k=1

x2k − µ2

)
=

N

N − 1
σ2.

σ2 gives an estimate of the population variance that is biased by a factor of
N − 1

N
. For this reason, σ2

is referred to as the biased sample variance.
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Properties of the variance

Given a list of N numbers {x1, . . . , xN}, then:
variance({x1, . . . , xN}) ≥ 0;

variance({x1, . . . , xN}) = 0 if and only if x1 = . . . = xN = µ.

Example: variance

Variance is useful for comparing two data sets having the same mean.
For instance, for the two sets of data having the same mean 3, it is:

variance({3, 3, 3, 3, 3, 3, 3}) = 0,

variance({2.6, 2.7, 2.8, 3, 3.2, 3.3, 3.4}) = 0.097.

Remark

The more the data deviate from the mean, the greater the variance!
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Properties of the variance

If we apply to the data a linear transformation, say if we define

yk = axk + b, a, b constants, k = 1, . . . ,N,

then
σ2 = variance({y1, . . . , yN}) = a2variance({x1, . . . , xN}) = a2σ2.

In fact, we know that

µ = mean({y1, . . . , yN}) = a

(
1

N

N∑
k=1

xk

)
+ b = aµ+ b,

whence,

σ2 = variance({y1, . . . , yN}) =
1

N

N∑
k=1

(yk − µ)2 =

=
1

N

N∑
k=1

(axk + b − aµ− b)2 =
1

N

N∑
k=1

(a(xk − µ))2 =

=
1

N

N∑
k=1

a2(xk − µ)2 = a2

(
1

N

N∑
k=1

(xk − µ)2

)
= a2σ2.
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Example: variance

Given the list {1, 2, 3, 5}, the variance is

σ2 = variance({1, 2, 3, 5}) = 1

4

(
4∑

k=1

x2k

)
− µ2 =

1

4

(
4∑

k=1

x2k

)
−

(
1

4

4∑
k=1

xk

)2

=

=
1 + 4 + 9 + 25

4
−
(
1 + 2 + 3 + 5

4

)2

= 9.75− 2.752 = 9.75− 7.56 = 2.19.

If we apply to the list {1, 2, 3, 5} the linear transformation

yk = 2xk + 1, k = 1, . . . , 4,

we have

σ2 = variance({3, 5, 7, 11}) = 22variance({1, 2, 3, 5}) = 22 · σ2 = 22 · 2.19 = 8.75.

The correct estimation of the variance is

σ̃2 =
4

3
σ2 =

4

3
8.75 = 11.67.

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 92/134



Properties of the variance: recursive formula

Suppose we know the arithmetic mean µN and the variance σ2
N of a list of N numbers {x1, . . . , xN}.

Adding a new number xN+1 to the list, the variance σ2
N+1 of N + 1 numbers can be computed as

σ2
N+1 = variance({x1, . . . , xN , xN+1}) =

N

N + 1
(σ2

N + µ2
N) +

1

N + 1
x2N+1 − µ2

N+1.

Firstly, recall that we are able to compute the arithmetic mean µN+1 of N + 1 numbers by means of the
recursive formula

µN+1 = mean({x1, . . . , xN , xN+1}) =
N

N + 1
µN +

1

N + 1
xN+1.

Then, from
σ2
N =

1

N

N∑
k=1

x2k − µ2
N ,

we have
N∑

k=1

x2k = N(σ2
N + µ2

N) =⇒
N+1∑
k=1

x2k = N(σ2
N + µ2

N) + x2N+1.

Finally,

σ2
N+1 =

1

N + 1

N+1∑
k=1

x2k − µ2
N+1 =

1

N + 1

(
N(σ2

N + µ2
N) + x2N+1

)
− µ2

N+1.
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Example: recursive formula for variance

Let us consider the list {1, 2, 3, 5}. We have that

µ4 = mean({1, 2, 3, 5}) = 1

4

4∑
k=1

xk =
1 + 2 + 3 + 5

4
= 2.75.

and
σ2
4 = 9.75− 2.752 = 9.75− 7.56 = 2.19.

Add the number 7, so we have the new list {1, 2, 3, 5, 7}. We have

µ5 = mean({1, 2, 3, 5, 7}) = 4

5
µ4 +

1

5
x5 =

4

5
2.75 +

7

5
= 3.6.

and

σ2
5 = variance({1, 2, 3, 5, 7}) = 4

5
(σ2

4 + µ2
4) +

1

5
x25 − µ2

5 =
4

5
(2.19 + 2.752) +

72

5
− 3.62 = 4.642

The correct estimation of the variance is

σ̃2
5 =

5

4
σ2
5 = 5.8.
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More on variance

The variance is related to the mean value of the squared differences between all possible couples of data.
In fact, it is:

1

N2

N∑
i=1

N∑
j=1

(xi − xj)
2 =

=
1

N2

N∑
i=1

N∑
j=1

(xi − µ+ µ− xj)
2 =

=
1

N2

N∑
i=1

N∑
j=1

(xi − µ)2 +
1

N2

N∑
i=1

N∑
j=1

(xj − µ)2 − 2

N2

N∑
i=1

N∑
j=1

(xi − µ)(xj − µ) =

=
N

N2

N∑
i=1

(xi − µ)2 +
N

N2

N∑
j=1

(xj − µ)2 − 2

N2

N∑
i=1

N∑
j=1

(xi − µ)(xj − µ) =

=
2N

N2

N∑
i=1

(xi − µ)2 =
2

N

N∑
i=1

(xi − µ)2 = 2σ2.
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Grouped data: approximation of the variance

Suppose we do not know the values xk associated to the statistical units but we have only the
corresponding absolute frequencies fk associated to the classes ]ak−1, ak ], where k = 1, . . . ,M.
In these situations, an approximation often used is

σ2 = variance({x1, . . . , xN}) ≈
1

N

M∑
k=1

(mk − µ)2fk ,

where µ is the approximation of the mean

µ ≈ 1

N

M∑
k=1

mk fk ,

and mk is the middle value of the k–th class, i.e., mk =
ak−1 + ak

2
.

If we consider the relative frequencies f̂k = fk
N , we have

σ2 = variance({x1, . . . , xN}) ≈
M∑
k=1

(mk − µ)2 f̂k .
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Example: grouped data – approximation of the variance

Consider the classes ]ak−1, ak ], where k = 1, . . . , 4, with the corresponding middle values mk and
absolute frequencies fk as follows:

Class mk fk

]0, 1] 0.5 1

]1, 2] 1.5 4

]2, 3] 2.5 4

]3, 4] 3.5 2

We have recovered the approximated mean as µ ≈ 1
11

∑4
k=1 mk fk = 0.5·1+1.5·4+2.5·4+3.5·2

11 ≃ 2.14, and the
approximation of variance is

σ2 ≈ 1

11

4∑
k=1

(mk − µ)2fk =

=
(0.5− 2.14)2 · 1 + (1.5− 2.14)2 · 4 + (2.5− 2.14)2 · 4 + (3.5− 2.14)2 · 2

11
≃ 0.78.
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Example: grouped data – approximation of the variance

Consider the classes ]ak−1, ak ], where k = 1, . . . , 4, with the corresponding middle values mk and relative

frequencies f̂k as follows:

Class mk f̂k

]−1, 1] 0 0.1

]1, 4] 2.5 0.4

]4, 7] 5.5 0.4

]7, 9] 8 0.1

We have recovered the approximated mean as
µ ≈

∑4
k=1 mk f̂k = 0 · 0.1 + 2.5 · 0.4 + 5.5 · 0.4 + 8 · 0.1 = 4, and the approximation of variance is

σ2 ≈
4∑

k=1

(mk − µ)2 f̂k =

= (0− 4)2 · 0.1 + (2.5− 4)2 · 0.4 + (5.5− 4)2 · 0.4 + (8− 4)2 · 0.1 ≃ 5.
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Standard deviation

The square root of variance is the standard deviation, denoted by σ.

Variance and standard deviation

Variance and standard deviation are called indexes of dispersion or indexes of variability, because they
measure the dispersion of the data around the mean.
The variance and standard deviation values, because they measure the absolute variation in a data set,
depend on the unit of measurement of the data.
In particular:

the unit of measurement of variance is equal to the square of the unit of measurement of the data;

the unit of measurement of the standard deviation is equal to the unit of measurement of the data.
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Other synthetic descriptors: mode

Given a list of N data {x1, x2, . . . , xN}, the mode is the value xk , if any, having the greatest absolute
frequency. When a set of data has a mode, we call unimodal the distribution of data. When more modes
exist, we have bimodal or in general multimodal distributions.

About mean, median and mode. . .

Mode is mostly used with qualitative data, for which it is not possible to compute mean and median.

Mode is not useful when the data are many and mostly different from each other; in such cases
mode may not exist or be away from the center of the data set. For this reason, this descriptor is
rarely used.

Mean, median and mode are called indexes of position or indexes of central tendency, because they
describe around which value the dataset is centered.

The median is preferable to the mean when you want to eliminate the effects of extreme values very
different from the other data: the reason is that the median does not use all the data, but only the
central data or the two central data; however, using only the central data makes the median
insensitive to all other data values and this may be a limitation of this index.
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Example 1: mode

The dataset
{3, 3, 5, 4, 7, 7, 7, 9, 2, 1}

has mode x = 7.

Example 2: mode

The dataset
{3, 3, 3, 5, 4, 7, 7, 7, 9, 2, 1}

has two modes: x = 3 and x = 7.

Example 3: mode

The dataset
{3, 5, 4, 7, 8, 6, 9, 2, 1}

has no mode, because each data occurs only once.
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Other synthetic descriptors

1 Coefficient of variation (CV):

CV =
σ

|µ|
,

that is a measure of variability (the differences) between the observed data (measured also with
different units of measurement). It shows the percentage of the standard deviation in relation to the
arithmetic mean, and it is a dimensionless parameter, since the mean and standard deviation are
expressed in the same unit of measurement.
The variability may depend on the level of the phenomena considered!

2 Range of variation:
range = max({x1, . . . , xN})−min({x1, . . . , xN});

it is quick to calculate but too much sensitive to possible outliers.

3 MAD (Median Absolute Deviations):

MAD = median({|x1 − x̂ |, . . . , |xN − x̂ |}),

where x̂ is the median of {x1, . . . , xN}.
This descriptor is robust against the presence of anomalous values.

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 102/134



Example: coefficient of variation

Given a sample of 200 parcels whose weight and volume are known. By calculating the mean and the
standard deviation of the two measurements, the following values are obtained:

mean weight: xw = 9Kg , standard deviation weight: σw = 1.5Kg ,

mean volume: xv = 2.7m3, standard deviation volume: σv = 0.6m3.

Let us compare the variability of weight and volume.
Since weight and volume are expressed in different units of measurement, it is necessary to take into
account the relative variability of the observations by computing the coefficient of variation.
For the weight, the coefficient of variation is

CV =
σ

|µ|
=

1.5

9
= 0.1667.

For the volume, the coefficient of variation is

CV =
σ

|µ|
=

0.6

2.7
= 0.2222.

Therefore, with respect to the mean, the volume of parcels has more variability than the weight.
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Standardization of data

The properties of mean and variance with respect to a linear transformation of data are useful in the
process of standardization of data. In this way, data coming from different contexts (and measured with
different scales) can be compared.

Let {x1, . . . , xN} a set of N numbers, with mean µ and variance σ2.
The standardization of the data is obtained by computing the data {z1, . . . , zN} so defined:

zk =
xk − µ

σ
, k = 1, . . . ,N.

It is immediate to verify that

µ = mean({z1, . . . , zN}) =
1

N

N∑
k=1

zk = 0,

and

σ2 = variance({z1, . . . , zN}) =
1

N − 1

N∑
k=1

(zk − µ)2 = 1.
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Example: standardization of data

Let us consider the list x = {1, 4, 6, 10, 11}. We have:

µ = mean({1, 4, 6, 10, 11}) = 1

5

5∑
i=1

xi =
1 + 4 + 6 + 10 + 11

5
= 6.4,

σ =

√√√√1

4

5∑
i=1

(xi − µ)2 =

=

√
1

4
((1− 6.4)2 + (4− 6.4)2 + (6− 6.4)2 + (10− 6.4)2 + (11− 6.4)2) = 4.15933.

The new standardized variables z = {z1, . . . , z5} such that

zk =
xk − µ

σ
, k = 1, . . . , 5

are

z =

{
1− 6.4

4.15933
,
4− 6.4

4.15933
,
6− 6.4

4.15933
,
10− 6.4

4.15933
,
11− 6.4

4.15933

}
,

i.e.,
z = {−1.29829,−0.577016,−0.0961694, 0.865525, 1.10595}.
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Standardized datasets: histograms
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Standardized datasets: box and whiskers plot
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Symmetry of distribution

Another characteristic of the data we consider is the symmetry of their distribution. If the tail towards
high values is much more pronounced than the tail towards low values (tail on the right), the distribution
is said to be positive skewness. In the opposite case (left tail more pronounced, or tail on the left) would
be called negative skewness.

Other synthetic descriptors: Skewness

A measure of the symmetry (or the lack of symmetry) of the distribution of data around the mean is
given by the skewness:

skewness =
1

Nσ3

N∑
k=1

(xk − µ)3.

We have a positive skewness if the data greater than the mean prevail against data less than the mean,
negative skewness in the opposite case. If the data are distributed symmetrically around the mean, the
positive terms and negatives in the summation will compensate each other and therefore we will have
skewness equal to zero.
Skewness is detectable when the median does not coincide with the mean; in fact, if the mean is greater
than the median, the distribution has positive skewness, whereas if the mean is smaller than the median,
the distribution has negative skewness.
Skewness is invariant with respect to linear transformations of data!
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Other synthetic descriptors: Skewness

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 109/134



Standardized datasets: histograms
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Standardized datasets: box and whiskers plot
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Other synthetic descriptors: Kurtosis

The degree of “flattening” of a distribution with the same variability (skewness equal to zero) is
measured by the kurtosis:

kurtosis =
1

Nσ4

N∑
k=1

(xk − µ)4.

It is a measure of whether the data are heavy-tailed or light-tailed with respect to the normal distribution
of data around the mean. There are three types of kurtosis:

mesokurtic: distributions that are moderate in breadth and curves with a medium peaked height;

leptokurtic: more values in the distribution tails and more values close to the mean (i.e., sharply
peaked with heavy tails);

platykurtic: fewer values in the tails and fewer values close to the mean (i.e., the curve has a flat
peak and has more dispersed scores with lighter tails).

Remark

kurtosis ≥ 0 and kurtosis = 0 only if the data are constant.

Kurtosis can be seen as a relationship between two indices of variability. The index at numerator is
chosen to be more sensitive to the presence of heavy tails with respect to the index at denominator.

For convention, kurtosis = 3 denotes mesokurtic distributions.

Kurtosis is invariant with respect to linear transformations of data.
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Other synthetic descriptors: Kurtosis
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Sinthetic descriptors

1st Work Organization

1st Quartile = 699,

median = 706,

3rd Quartile = 713,

mean = 705.472,

variance = 99.8668,

skewness = −0.193553,

kurtosis = 2.69996.

2nd Work Organization

1st Quartile = 688,

median = 699,

3rd Quartile = 712,

mean = 700.781,

variance = 276.025,

skewness = 0.452882,

kurtosis = 2.95124.

3rd Work Organization

1st Quartile = 707,

median = 718.5,

3rd Quartile = 730,

mean = 719.177,

variance = 247.54,

skewness = 0.100962,

kurtosis = 2.60925.
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Covariance

Given two lists (or variables) of N numbers, say x = {x1, . . . , xN} and y = {y1, . . . , yN}, with the
corresponding arithmetic mean x = mean({x1, . . . , xN}) and y = mean({y1, . . . , yN}), their covariance is

cov(x, y) =
1

N

N∑
k=1

(xk − x)(yk − y) =
1

N

N∑
k=1

xk(yk − y)− x

N

N∑
k=1

(yk − y) =

=
1

N

N∑
k=1

xkyk −
y

N

N∑
k=1

xk =
1

N

N∑
k=1

xkyk − x y = xy − x y ,

being xy = mean({x1y1, . . . , xNyN}), that measures how much the two variables vary together.
The sign of the covariance shows the tendency in the linear relationship between the variables:

if cov(x, y) > 0 ⇒ the data y increases when the data x increases, i.e., there is a positive linear
relationship among the data;

if cov(x, y) < 0 ⇒ the data y decreases when the data x increases, i.e., there is a negative linear
relationship among the data;

if cov(x, y) = 0 ⇒ there is no linear relationship between the the data.
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Covariance: properties

cov(x, y) = cov(y, x).
In fact:

cov(x, y) =
1

N

N∑
k=1

(xk − x)(yk − y) =
1

N

N∑
k=1

(yk − y)(xk − x) = cov(y, x).

cov(x, x) = σ2(x) ≥ 0.
In fact:

cov(x, x) =
1

N

N∑
k=1

(xk − x)(xk − x) =
1

N

N∑
k=1

(xk − x)2 = σ2(x) ≥ 0.

cov(x,−x) = −σ2(x) ≤ 0.
In fact:

cov(x,−x) =
1

N

N∑
k=1

(xk − x)(−xk + x) = − 1

N

N∑
k=1

(xk − x)2 = −σ2(x) ≤ 0.
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Covariance: properties

If we apply a linear transformation to the variables x = {x1, . . . , xN} and y = {y1, . . . , yN}, say

vk = axk + b, wk = cyk + d a, b, c , d ∈ R, k = 1, . . . ,N,

then
cov(v,w) = ac cov(x, y),

where v = {v1, . . . , vN} and w = {w1, . . . ,wN}. In fact, we know that

v = mean({v1, . . . , vN}) = a

(
1

N

N∑
k=1

xk

)
+ b = ax + b,

w = mean({w1, . . . ,wN}) = c

(
1

N

N∑
k=1

yk

)
+ d = cy + d ,

whence,

cov(v,w) =
1

N

N∑
k=1

(vk − v)(wk − w) =
1

N

N∑
k=1

(axk + b − ax − b)(cyk + d − cy − d) =

= ac
1

N

N∑
k=1

(xk − x)(yk − y) = ac cov(x, y).
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Covariance: properties

If we apply a transformation to the variables x = {x1, . . . , xN}, y = {y1, . . . , yN}, v = {v1, . . . , vN} and
w = {w1, . . . ,wN} such that

pk = axk + byk , qk = cvk + dwk , a, b, c , d ∈ R, k = 1, . . . ,N,

then
cov(p,q) = ac cov(x, v) + ad cov(x,w) + bc cov(y, v) + bd cov(y,w),

where p = {p1, . . . , pN} and q = {q1, . . . , qN}. In fact:

cov(p,q) =
1

N

N∑
k=1

(pk − p)(qk − q) =
1

N

N∑
k=1

(axk + byk − ax − by)(cvk + dwk − cv − dw) =

=
1

N

N∑
k=1

(a(xk − x) + b(yk − y))(c(vk − v) + d(wk − w)) =

= ac
1

N

N∑
k=1

(xk − x)(vk − v) + ad
1

N

N∑
k=1

(xk − x)(wk − w)+

+ bc
1

N

N∑
k=1

(yk − y)(vk − v) + bd
1

N

N∑
k=1

(yk − y)(wk − w) =

= ac cov(x, v) + ad cov(x,w) + bc cov(y, v) + bd cov(y,w).

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 118/134



Covariance: properties

If we apply a transformation to the variables x = {x1, . . . , xN} and y = {y1, . . . , yN} such that

wk = axk + byk , a, b,∈ R, k = 1, . . . ,N,

then
σ2(w) = a2σ2(x) + b2σ2(y) + 2ab cov(x, y),

where w = {w1, . . . ,wN}. In fact:

σ2(w) =
1

N

N∑
k=1

(wk − w)2 =
1

N

N∑
k=1

(axk + byk − ax − by)2 =

=
1

N

N∑
k=1

(a(xk − x) + b(yk − y))2 =

=
a2

N

N∑
k=1

(xk − x)2 +
b2

N

N∑
k=1

(yk − y)2 +
2ab

N

N∑
k=1

(xk − x)(yk − y) =

= a2σ2(x) + b2σ2(y) + 2ab cov(x, y).
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Unbiased sample covariance

When data refer to a sample, a correct definition of covariance is given by means of the Bessel’s
correction:

cov(x, y) =
1

N − 1

N∑
k=1

(xk − x)(yk − y) =
N

N − 1
(xy − x y).

Cauchy-Schwarz inequality

Given two lists x = {x1, . . . , xN} and y = {y1, . . . , yN}, it is

cov2(x, y) ≤ σ2(x)σ2(y)

i.e.,
−σ(x)σ(y) ≤ cov(x, y) ≤ σ(x)σ(y).

Geometric interpretation of covariance

The covariance is maximal, i.e., cov(x, y) = σ(x)σ(y), when the points are aligned along an
increasing straight line.

The covariance is minimal, i.e., cov(x, y) = −σ(x)σ(y), when the points are aligned along a
decreasing straight line.

The covariance is zero, i.e., cov(x, y) = 0, when the points are scattered.

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 120/134



Correlation coefficient

We may consider the correlation coefficient, denoted by ρ, between the two lists (or variables) x and y,
say

ρ =
cov(x, y)√
σ2(x)σ2(y)

.

that measures how much the data are linearly correlated, i.e., as much as the absolute value of the
correlation coefficient approaches to 1.
This coefficient is independent on the scale used to measure the data.
Due to the Cauchy-Schwarz inequality, it is

−1 ≤ ρ ≤ 1.
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Correlation coefficient: property

The correlation coefficient is equal to the covariance of the standardized data.
In fact:

ρ =
cov(x, y)√
σ2(x)σ2(y)

=
cov(x, y)

σ(x)σ(y)
=

=
1

σ(x)σ(y)

1

N

N∑
k=1

(xk − x)(yk − y) =
1

N

N∑
k=1

(
xk − x

σ(x)

)(
yk − y

σ(y)

)
= cov(zx , zy ).

Geometric interpretation of correlation coefficient

If ρ > 0, as one variable increases, the other one also increases. If ρ = 1, the points are aligned
along an increasing straight line.

If ρ < 0, as one variable increases, the other one decreases. If ρ = −1, the points are aligned along
a decreasing straight line.

If ρ = 0 does not exist a linear relationship among the variables.
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Example: computation of covariance and correlation coefficient

Let x = {1, 4, 6, 10, 11} and y = {0, 1, 2, 3, 4} be two lists.

x =
1

5

5∑
i=1

xi = 6.4, y =
1

5

5∑
i=1

yi = 2,

σ2(x) =
1

4

5∑
i=1

(xi − x)2 =
1

4

(
(1− 6.4)2 + (4− 6.4)2 + (6− 6.4)2 + (10− 6.4)2 + (11− 6.4)2

)
= 17.3,

σ2(y) =
1

4

5∑
i=1

(yi − y)2 =
1

4

(
(0− 2)2 + (1− 2)2 + (2− 2)2 + (3− 2)2 + (4− 2)2

)
= 2.5,

cov(x, y) =
1

4

5∑
i=1

(xi − x)(yi − y) =
1

4
((1− 6.4)(0− 2) + (4− 6.4)(1− 2) + (6− 6.4)(2− 2)

+(10− 6.4)(3− 2) + (11− 6.4)(4− 2)) = 6.5.

Furthermore, the correlation coefficient is positive and very close to 1! In fact:

ρ =
cov(x, y)√
σ2(x)σ2(y)

=
6.5√

17.3 · 2.5
= 0.988372.
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Limitations of Correlation

If the covariance is zero, then there is no linear relationship among the data. But it is possible there
exists another relation (non-linear) between the data!

Correlation does not imply causation: if two variables are highly correlated, it does not mean one
variable causes the other to change.

Correlation is sensitive to outliers: extreme values can distort the correlation, making the
relationship appear stronger or weaker than it is.

Matteo Gorgone Mathematics for Data Analysis: Descriptive Statistics 124/134



Example

Consider the lists x = {−3,−2,−1, 0, 1, 2, 3} and y = {9, 4, 1, 0, 1, 4, 9}. We have:

x =
1

7

7∑
k=1

xk =
−3− 2− 1 + 0 + 1 + 2 + 3

7
= 0, y =

1

7

7∑
k=1

yk =
9 + 4 + 1 + 0 + 1 + 4 + 9

7
= 4;

then, the covariance is:

cov(x, y) =
1

6

7∑
k=1

(xk − x)(yk − y) =

=
−3(9− 4)− 2(4− 4)− 1(1− 4) + 0(0− 4) + 1(1− 4) + 2(4− 4) + 3(9− 4)

6
= 0.

Then, there is not a linear relationship between x and y. However, there is a quadratic relation!
In fact:

yi = x2i , i = 1, . . . , 7.
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Example: spurious correlations

Let us consider the numerical data

x1 = {152.583, 166.333, 179.917, 139.917, 112.917, 99.4167, 75.9167, 53.1667, 39.3333, 33.0833, 25.9167},
x2 = {17624, 18409, 18025, 16926, 16236, 15105, 14136, 13078, 13464, 13662, 13218},

that are the collections of the relative volume of Google searches for ’facebook’ (Worldwide, without
quotes) and the associates degrees conferred by postsecondary institutions with a field of study in ’Visual
and performing arts’, respectively. The data have been collected in the range interval of years
[2011, 2021]. We can see the following trends:
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Example: spurious correlations

The data are expressed in different scales of misure. Then, let us standardize the two numerical lists, i.e.,

construct the vectors zi =
xi − xi
σ(xi )

(i = 1, 2):

z1 ={0.968796, 1.21305, 1.45435, 0.743799, 0.264175, 0.0243579,−0.393092,

− 0.79722,−1.04295,−1.15398,−1.28128},
z2 ={1.05746, 1.43822, 1.25196, 0.71889, 0.384205,−0.164388,−0.634403,

− 1.14759,−0.960357,−0.864317,−1.07968}.

We can see the corresponding trends together:
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Example: spurious correlations

The two vectors looks highly correlated! In fact, the correlation coefficient between x1 and x2 is 0.977.

The question is: does all this make sense? Of course, NO! Correlation does not imply causation!
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Example: spurious correlations

Let us consider the numerical data

x1 = {4.97305, 4.95401, 5.00953, 5.12053, 5.25217, 5.36786, 5.43929,
5.45028, 5.39873, 5.29605, 5.16633, 5.04464, 4.96744},

x2 = {3510, 4020, 4720, 5210, 5900, 6680, 6920, 7180, 6730, 5400, 4460, 3990, 4220},

that are the collections of the the average distance between Jupiter and the Sun as measured on the first
day of each month and the the number of secretaries and administrative assistants, except legal,
medical, and executive in Alaska, respectively. The data have been collected in the range interval of
years [2010, 2022]. In order to make the data comparable, let us standardize them:

z1 = { − 1.13187,−1.23227,−0.939492,−0.35414, 0.340056, 0.95014, 1.32682,

1.38478, 1.11293, 0.571454,−0.112616,−0.754341,−1.16145},
z2 = { − 1.4156,−1.01296,−0.460327,−0.0734823, 0.471258, 1.08705, 1.27653,

1.48179, 1.12653, 0.0765187,−0.665591,−1.03665,−0.855066}.
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Example: spurious correlations

The following plot shows the trends:

The two vectors looks highly correlated! In fact, the correlation coefficient is ρ = 0.95.
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Correlation is sensitive to outliers!

Let us consider the couples of numerical data

x1 = {4.97305, 4.95401, 5.00953, 5.12053, 5.25217, 5.36786, 5.43929,
5.45028, 5.39873, 5.29605, 5.16633, 5.04464, 4.96744},

x2 = {3510, 4020, 4720, 5210, 5900, 6680, 6920, 7180, 6730, 5400, 4460, 3990, 4220},

and

y1 = {4.97305, 4.95401, 5.00953, 5.12053, 5.25217, 5.36786, 5.43929,
5.45028, 5.39873, 5.29605, 5.16633, 5.04464, 4.96744, 4.9},

y2 = {3510, 4020, 4720, 5210, 5900, 6680, 6920, 7180, 6730, 5400, 4460, 3990, 4220, 7150},

where, in the second one, we have just added the outlier (4.9, 7150). We have that

corr(x1, x2) = 0.95

and
corr(y1, y2) = 0.66
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Covariance matrix

If we have p lists (or variables, representing p features) x1, x2, . . . , xp ∈ RN , we may construct the p × p
covariance matrix whose entries are the covariances associated with all possible pairs of variables xi , i.e.,

cov(xi , xj) =
1

N

N∑
k=1

(xik − x i )(xjk − x j), i , j = 1, . . . , p.

Since the covariance of a list with itself is its variance (cov(xi , xi ) = σ2(xi )), in the main diagonal we
have the variances of each variable. The covariance matrix is symmetric, and positive semi-definite; then
it can be diagonalized. By looking for its eigenvalues and eigenvectors, and using an orthogonal basis,
the distribution of data can be characterized: this is the object of Principal Components Analysis which
can be seen as a type of compression information.

Correlation matrix

If we have p lists (or variables, representing p features) x1, x2, . . . , xp ∈ RN , we may construct the p × p
correlation matrix whose entries are the correlation coefficients associated with all possible pairs of
variables xi , i.e.,

corr(xi , xj) = ρij =
cov(xi , xj)√
σ2(xi )σ2(xj)

, i , j = 1, . . . , p.

Correlation matrix is a symmetric and positive semi-definite matrix: on the main diagonal the entries are
equal to 1 (each variable is trivially correlated to itself).
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Covariance matrix


σ2(x1) cov(x1, x2) . . . cov(x1, xp)

cov(x2, x1) σ2(x2) . . . cov(x2, xp)
...

...
. . .

...
cov(xp, x1) cov(xp, x2) . . . σ2(xp)



Correlation matrix


1 corr(x1, x2) . . . corr(x1, xp)

corr(x2, x1) 1 . . . corr(x2, xp)
...

...
. . .

...
corr(xp, x1) corr(xp, x2) . . . 1


Covariance matrix vs. Correlation matrix

The covariance matrix measures how changes in one variable are associated with changes in
another, but without standardizing the values.

The correlation matrix represents the strength and direction (positive/negative) of variables
relationships on a standardized scale from −1 to +1.
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Example

The manager of a clothing store is analyzing the sales of classic blue sweaters in 10 different periods of
the year. The manager has the number x1 of sweaters sold, the price (in euros) variations x2, the cost
(in euros) x3 of the advertising that appeared in newspapers, and the number of hours x4 the sales
assistant was present in the store. The data are:

x1 = {230, 181, 165, 150, 97, 192, 181, 189, 172, 170}, x2 = {125, 99, 97, 115, 120, 100, 80, 90, 95, 125},
x3 = {200, 55, 105, 85, 0, 150, 85, 120, 110, 130}, x4 = {109, 107, 98, 71, 82, 103, 111, 93, 86, 78}.

The manager believes that the price variations influences the number of sweaters sold. Is it correct?

Covariance matrix


1152.46 −88.91 1589.67 301.6
−88.91 244.27 102.33 −101.76
1589.67 102.33 2915.56 233.67
301.6 −101.76 233.67 197.07



Correlation matrix
1 −0.17 0.87 0.63

−0.17 1 0.12 −0.46
0.87 0.12 1 0.31
0.63 −0.46 0.31 1


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