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What is Linear Regression?

Linear regression is a linear approach for modelling the relationship between a response and one or more
explanatory variables (also known as dependent and independent variables). The case of one explanatory
variable is called simple linear regression; for more than one explanatory variable, the process is called
multiple linear regression. The relationships are modeled using linear predictor functions whose unknown
model parameters are estimated from the data.

Models which depend linearly on their unknown parameters are easier to fit than models which are
non-linearly related to their parameters!

Be careful

Multiple linear regression is different from multivariate linear regression, where multiple correlated
dependent variables are predicted, rather than a single dependent variable.
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Linear regression: applications

Applications fall into one of the following two broad categories:

@ if the aim is prediction, forecasting, or error reduction, linear regression can be used to fit a
predictive model to an observed data set of values of the response and explanatory variables. After
developing such a model, if additional values of the explanatory variables are collected without an
associated response value, the fitted model can be used to make a prediction of the response;

o if the aim is to explain variation in the response variable that can be attributed to variation in the
explanatory variables, linear regression analysis can be applied to quantify the strength of the
relationship between the response and the explanatory variables, and in particular to determine
whether some explanatory variables may have no linear relationship with the response at all, or to
identify which subsets of explanatory variables may contain redundant information about the
response.

Matteo Gorgone Mathematics for Data Analysis: Linear Regression 3/33



The problem

The following table shows, for 31 cherry trees, the trunk diameter and the volume of wood obtained
from the felling of trees.

Diameter Volume | Diameter Volume | Diameter Volume
8.3 10.3 11.3 24.2 14.0 34.5
8.6 10.3 11.4 21.0 14.2 31.7
8.8 10.2 11.4 21.4 14.5 36.3
10.5 16.4 11.7 21.3 16.0 38.3
10.7 18.8 12.0 19.1 16.3 42.6
10.8 19.7 12.9 22.2 17.3 55.4
11.0 15.6 12.9 33.8 17.5 55.7
11.0 18.2 13.3 27.4 17.9 58.3
11.1 22.6 13.7 25.7 18.0 51.5
11.2 19.9 13.8 24.9 18.0 51.0
20.6 77.0

We want to use the data to get one equation that allows to predict the volume (obtainable only after the
tree has been cut down) from the diameter (easily measurable)!
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Data Analysis

data = {{"Diameter", "Volume"}, {8.3, 10.3}, {8.6, 10.3}, {8.8, 10.2}, {10.5, 16.4},
{10.7, 18.8}, {10.8, 19.7}, {11.0, 15.6}, {11.0, 18.2}, {11.1, 22.6}, {11.2, 19.9},
{20.6, 77.0}, {11.3, 24.2}, {11.4, 21.0}, {11.4, 21.4}, {11.7, 21.3}, {12.0, 19.13},
{12.9, 22.2}, {12.9, 33.8}, {13.3, 27.4}, {13.7, 25.7}, {13.8, 24.9}, {14.0, 34.5},
{14.2,31.7}, {14.5, 36.3}, {16.0, 38.3}, {16.3, 42.6}, {17.3, 55.4}, {17.5, 55.7},
{17.9, 58.3}, {18.0, 51.5}, {18.0, 51.0}};
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Diameter vs. Volume: Plot of data
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A strong relationship is evident. Basically linear with perhaps some problems at the extremes.
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Model for cherry trees
Suppose there is a linear relationship between the data. Then, we can consider a model of the type

volume = a(diameter) + /3 + error,

where error expresses the part of volume fluctuations not related to diameter.

It seems reasonable to try to compute « and 3 in order to obtain good “predictions” on the observed
data set. To this purpose, let us denote by N = 31 the number of observations, y; the i-th tree wood
volume and x; the i-th tree trunk diameter.

We would like to find values for parameters such that

Q

axy + B,
axy + B,

i
Y2

%

yn = axy + 8.
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Linear regression

Suppose we have two N-uples of numerical values measuring some characters of a population, say

X:{XlaXZa"'va}, y:{}/h)’Za---aYN}-

When there are arguments supporting the assumption that these two characters are in some way related,
we may conjecture that there is a model describing their mutual variance, i.e., we want to predict the
dependent variable y using only the independent variable x.

The simplest model is the linear one, that is we may assume that there is a linear equation,

y=ax+f, «, [ suitable constants to be determined,

that well describe the data.

Measuring errors

| N\

The purpose of this straight line is not just to be close to all of the data (for this we will have to wait for
PCA and dimensionality reduction), but just prediction!
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Linear regression

Of course, in real applications, it is unrealistic to suppose that the straight line in the xy plane, with
equation
y=ax+

is such that all points (x;,y;) (i =1,..., N) lie on the straight line.

The aim is looking for coefficients & and § such that the errors, that is the quantities (linear deviations
of data from the straight line or residuals),

=y —ax; — B, i=1....N

i.e., the differences among the observed values and the “predicted” values, are the smallest possible.

If the deviations for each point are small, then also their sum will be small. Nevertheless, to avoid that
positive deviations balance negative deviations, we consider the sum of the squared deviations, and look
for o and B such that this sum attains a minimum.
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L
Note that the errors are not the orthogonal distance (or Euclidean distance) from the points (x;, y;) to

the straight line, but the (signed) distance from the points (x;, y;) to the corresponding point on the
straight line with the same x;-coordinate.

10

The observations (red) are assumed to be the result of random deviations ( ) from an underlying
relationship (blue) between the dependent variable y and the independent variable x.
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Method of squared minima (or Least Square Method)

The method of least squares is a standard approach in regression analysis to approximate the solution of
overdetermined systems by minimizing the sum of the squares of the residuals made in the results of
each individual equation.
Least squares problems fall into two categories:

@ linear or ordinary least squares;

@ nonlinear least squares.
This distinction depends on whether or not the residuals are linear in all parameters to be estimated.

The linear least squares problem has a closed—form solution that is unique, provided that the number of
data points used for fitting equals or exceeds the number of unknown parameters.

The nonlinear problem is usually solved by iterative procedures; at each iteration the system is
approximated by a linear one, and thus the core computation is similar in both cases.

We will investigate only the linear case!
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Least Square Method

The goal is to find the parameter values of a model function to best fit a data set.

Let us consider a data set made of N data points (x;,y;), i = 1,..., N, where x; is an independent
variable and y; is a dependent variable whose value is found by observation. The model function has the
form

y =f(x,a) +r,

where £ is a function depending on p parameters o = (1, ..., ap), with p < N, x = (x1,...,xy) and
r=(r,...,ry) is the error.

The fit of a model to a data point is measured by its residual, defined as the difference between the
observed value of the dependent variable and the value predicted by the model:

r;:y,-—f(x,-,a), iZ].,...,N.

The Least Square Method finds the optimal parameter values by minimizing the Sum of Squared
Residuals (or, Sum of Squared Errors):

n

E(@) =Y = > (i~ Flx, ).

i=1
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... Least Square Method

The minimum of the sum of squares is found by setting the gradient to zero, i.e., Vo E(ax) = 0.
Since the model contains p parameters, there are p gradient equations:

N
—_22 9 o =1 p

Oa; p 8aJ

and, since r; = y; — f(x;, &), the gradient equations become

of (x;, ) .
7—72 o)) ———— =10, :1,..., .
Oa;j Z Fxi, @) Oa;j 0 / =

The best fit can be found by solving the gradient (called also normal) equations. Each particular problem
requires particular expressions for the model and its partial derivatives.
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Least Square Method in simple linear regression

Using the data (x;,y;) (i =1,...,N), we construct the function, depending on « and §,

N

E(a, ) =Y (axi+ B —yi).

i=1

This function may attain a minimum for values of « and (3 such that the partial derivatives of E(«, )
are vanishing:

IE o

— = ZQ(ax,- + 6 —yi)xi =0,
o =

IE

— = Z2(ax,-+5fy,-) =0.
=
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Method of squared minima

By simple computations, the previous conditions may be written as follows:

ax?+ fx —xy =0,
ax+ -y =0,
where X = mean({xy,...,xy}) and y = mean({y1, ..., yn}), x2 = mean({xZ,...,x3}), and

Xy = mean({x1y1,. .., Xnyn})-
These equations represent a nonhomogeneous linear system for the unknowns « and (3, whose solution is:

Xy —Xy _ cov(x,y)
X2 -x2 o%(x) ]

where cov(x,y) = 75 S Gk —X) (v — ) 7 7 — xy).
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By inserting 5 =y — ax in the regression straight line y = ax + 8, we have

y=ax+f8=ax+y—ax =y —y = a(x —X),

i.e., the straight line goes through the point (X, ).

Mean of residuals
The sum of the residuals is zero, i.e.,

N N
> =2,
i=1 i=1

In fact:

N N N N
Zr;:Z(y;—ax,-—ﬂ):Zy,-—aZx,-—BN:yN—aYN—(Y—aY)Nzo,
i=1 i=1 i=1 i=1

where the relation 8 =y — ax has been used.

(y,- — QX —5) =0.
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Variance of residuals

Since the mean of residuals is zero, the variance of residuals is the mean of the squared residuals.
Denoting with r = {r, ..., ry}, we have

The variance of the residuals o(r) can be used to get a “numerical idea” of the goodness of fit of the
model to the data. In fact, the more the variance of the residuals will be small, the better regression line
“explains” the response variations.
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Variance of residuals

The variance of residuals can be computed as
2
2 2 cov(x,y)
= 1 — = o
= < aZ<x)o—2(y)>

In fact, using the relations oo = C‘;‘;E:y’ and 3 =y — aXx, we have:

1 . 1y 3
az(r):NZ NZ ZZNZ(M— -y +ax)’ Z y) = alx = X))’
-5 ;(y,. ~7+ ,;(x, R - ,;(x, =3 n=1=
= o%(y) + a?0?(x) — 2acov(x,y) =
— 0 cov2(x, y) 2 X) — Mcov X
= o2(y) + 0 o?(x) — 2 200 (x,y) =
. COV2(X, y) cov ( ,Y) — 2 . M = 2 _ M
= o?(y) + 2(x) -2 2(x) (y) o2(x) (¥) (1 02(x)02(y)> .
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About linear regression. . .

Since
cov?(x, y)

720 = 22(s) (1- I ) = )1 )

it follows that the variance of the residuals will be small and then better is the fitting of data with linear
model, if the absolute value of the correlation coefficient

cov(x,y)

P 0

is close as much possible to 1.
When p + 1, the data are aligned along a straight line, in particular:

@ p > 0 if the data x and y grow together;
@ p < 0 if y decreases when x grows.

For values of p distant from 1, linear regression loses its meaning, even if this does not exclude that
between the data may still exist a non-linear relation (when p = 0 there is no any linear correlation
among the data).
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BN
Computation of parameters in the case of cherry trees

Let x; be the j-th trunk diameter and y; be the i-th wood volume, with i =1,...,31 (N = 31). It is:

1 31 1 31
R== i = 13.25, V== i = 30.17,
X 31;x 3.25 v 31;;/ 30.17

31 31

1 1
2 Z —\2 200N Z 2
§ : 2 2 C°V2(X»Y)
COV X y 30 — X ) = 4-9897 g (l’) =0 (y) ]. — W = 1748
Then:
cov(x,y) 49.88 _ cov(x, y)f 49.88
= = =5.07 = ——=27% =30.17 — ——13.25 = —36.94.

“TT2(x) 985 PRV TS0 9.85

Furthermore, the correlation coefficient is positive and very close to 1! In fact:

_cov(x,y) 49.88 _
Vo2(x)o2(y)  V/9.85-270.20

Matteo Gorgone Mathematics for Data Analysis: Linear Regression



Volume vs. Diameter: Regression straight line
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Vol = 5.07diam —36.94,  p=0.97, o?(r)=17.48
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IS
Italian Football League, 2014-2015

Team Matches | Victories | Draws | Defeats | GS | GC | GD | Score
Juventus 38 26 9 3 72 | 24 | 48 87
Roma 38 19 13 6 54 | 31 | 23 70
Lazio 38 21 6 11 71 | 38 | 33 69
Fiorentina 38 18 10 10 61 | 46 15 64
Napoli 38 18 9 11 70 | 54 | 16 63
Genoa 38 16 11 11 62 | 47 15 59
Sampdoria 38 13 17 8 48 | 42 6 56
Inter 38 14 13 11 59 | 48 11 55
Torino 38 14 12 12 48 | 45 3 54
Milan 38 13 13 12 56 | 50 6 52
Palermo 38 12 13 13 53 | 55 -2 49
Sassuolo 38 12 13 13 49 | 57 -8 49
Verona 38 11 13 14 49 | 65 | -16 46
Chievo 38 10 13 15 28 | 41 | -13 43
Empoli 38 8 18 12 46 | 52 -6 42
Udinese 38 10 11 17 43 | 56 | -13 41
Atalanta 38 7 16 15 38 | 57 | -19 37
Cagliari 38 8 10 20 48 | 68 | -20 34
Cesena 38 4 12 22 36 | 73 | -37 24
Parma 38 6 8 24 33 | 75 | -42 19
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Data Analysis

data =
{{"Team", "Goals scored", "Goals conc.", "Goal diff.", "Score"},
{"Juventus", 72, 24, 48, 87}, {"Roma", 54, 31, 23, 70},
{"Lazio", 71, 38, 33, 69}, {"Fiorentina", 61, 46, 15, 64},
{"Napoli", 70, 54, 16, 63}, {"Genoa", 62, 47, 15, 59},
{"Sampdoria", 48, 42, 6, 56}, {"Inter", 59, 48, 11, 55},
{"Torino", 48, 45, 3, 54}, {"Milan", 56, 50, 6, 52},
{"Palermo", 53, 55, -2, 49}, {"Sassuolo", 49, 57, -8, 49},
{"Verona", 49, 65, -16, 46}, {"Chievo", 28, 41, -13, 43},
{"Empoli", 46, 52, -6, 42}, {"Udinese", 43, 56, -13, 41},
{"Atalanta", 38, 57, -19, 37}, {"Cagliari", 48, 68, -20, 34},
{"Cesena", 36, 73, -37, 24}, {"Parma", 33, 75, -42, 19}};
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Correlation Matrix for ltalian Football League

Taking the scores, the number of scored goals, the number of conceded goals, and the differences
between the last two, we have the following correlation matrix:

1. 0.838748 —0.883734 0.982628

C— 0.838748 1. —0.538252  0.869634

—0.883734 —0.538252 1. —0.884162
0.982628  0.869634 —0.884162 1.

v
Correlation matrix is a symmetric matrix: on the main diagonal we have entries equal to 1 (each variable
is trivially correlated to itself); the score is positively correlated to the scored goals and to goal

differences, and negatively correlated to the conceded goals. Moreover, the best value of correlation (a
number very close to 1) is between the score and the goal difference!
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Gol scored vs. Score: Plot of data
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Positive Correlation!
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L
Goals scored vs. Score: Regression straight line

PT

I 1 1 1 1 G S
30 40 50 60 70

Score = 1.09367GS — 5.34602, p = 0.838748, o?(r) = 76.8182
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Goals conceded vs. Score: Plot of data
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L
Goals conceded vs. Score: Regression straight line
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Score = —1.09044GC + 106.48,  p = —0.883734,  o>(r) = 56.7424
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Goal difference vs. Score: Plot of data
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Goal difference vs. Score: Regression straight line
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Score = 0.710253GD + 50.65,  p = 0.982628, o?(r) = 8.92314
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Goals scored vs. Goals conceded: plot of data
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Negative correlation!
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Goals scored vs. Goals conceded: Regression straight line loses its meaning!
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GS = —0.568804GC + 80.3227,  p=—0.538252,  o2(r) = 108.233
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Details of the computation in C

Using a C program, the data x and y can be represented as two arrays x and y of n elements (float).
Then we need some functions to compute the mean value and the covariance (in fact, the variance is
simply the covariance of a set of data with itself). And this is all you need to determine « and 3.

float mean(float *a, int n)
// Mean of the array a
{

int k;

float ma=0.0;

for (k=0;k<n;k++)

ma=ma+alk] ;
return ma/n;

3

alpha = cov(x,y,n)/cov(x,x,n);
beta = mean(y)-alpha*mean(x) ;

float cov(float *a,float *b,int n)
// Covariance of arrays a,b
{

int k;

float ma,mb,cov=0.0;

ma = mean(a,n);

mb = mean(b,n);

for (k=0;k<n;k++)

cov=cov+(alk] -ma)*(b[k]-mb) ;
return cov/(n-1);
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