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Why Linear Algebra?

Linear algebra is a central field of mathematics that is universally agreed to be a prerequisite to a deeper
understanding of data analysis.

Linear algebra is the mathematics of data (vectors and matrices are the language of data).

Linear algebra is the study of lines and planes, vector spaces and mappings that are required for linear
transformations.

Applications of Linear Algebra

@ Matrices in Engineering, such as a line of springs.
Graphs and Networks, such as analyzing networks.
Markov Matrices, Population, and Economics, such as population growth.
Linear Programming, the simplex optimization method.

°
°

°

@ Fourier Series: Linear Algebra for functions, used widely in signal processing.

@ Computer Graphics, such as the various translation, rescaling and rotation of images.
°

Linear Algebra for statistics and probability, such as least squares for regression.
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Linear Algebra and Statistics
Some clear fingerprints of linear algebra on statistics and statistical methods include:
@ use of vector and matrix notation, especially with multivariate statistics;
solutions to least squares and weighted least squares, such as for linear regression;
estimates of mean and variance of data matrices;
the covariance matrix that plays a key role in multinomial Gaussian distributions;

Principal Component Analysis for data reduction that draws many of these elements together.
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Linear Algebra and Data Analysis

Linear algebra is used in data preprocessing, data transformation, and model evaluation.
Then, we need to be familiar with:

@ Vector spaces and subspaces;
@ Euclidean spaces;
@ Linear operators;
Vector and matrix operations;
Linear systems;

°

°

@ Distances and Metrics;

o Eigenvalues and Eigenvectors;
°

Quadratic forms.
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Basic definitions

Group (additive notation)
A group G is a non—empty set of elements endowed with a binary law of composition

+:GxG =G
(x,y) = x+y

satisfying the following axioms:
@ the associative property holds:

Vx,y,z€ G (x+y)+z=x+(y+2);

@ there exists the identity element:

d0€ G suchthat Vxe G 0+x=x+0=x;

© every element has an opposite:

Vxe€ G J—xe€ G suchthat x+(—x)=—-x+x=0.

In this case, (G, +) is called additive group.
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Basic definitions

Group (multiplicative notation)
A group G is a non—empty set of elements endowed with a binary law of composition

2 GxG—=G
(x,y) = x-y
satisfying the following axioms:
@ the associative property holds:
Vx,y,z€ G (x-y)-z=x-(y-2);
@ there exists the identity element:

d1e€ G suchthat Vxe G 1-x=x-1=x;

© every element has an inverse:

Vxe G Ix'eG suchthat x-xt=x1.x=1.

In this case, (G, -) is called multiplicative group.
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Basic definitions

The identity element 0 (1) and the opposite element —x (x~1) of every element x € G are unique.

Commutative group (additive notation)

An additive group (G, +) is Abelian if

X+y=y+x Vx,y € G.

Commutative group (multiplicative notation)

A multiplicative group (G, -) is Abelian if

X-y=y-x Vx,y € G.
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Basic definitions

Establish if the following sets with the corresponding operations are groups:

QO (N,+), (N,);
Q (Z,+)., (Z,-)
9 (Q,+) (Q)
0 R+) (R,
Q (Z—-{0},)). (@—{0},),

(R —{0},-).

Matteo Gorgone
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Basic definitions

Subgroup (additive notation)

A subgroup H is a non—empty subset of a group (G, +) which is itself a group with the operation
inherited from that of G.
Equivalently, a subgroup H of G is a subset of G, denoted by H < G, such that

Q@ 0g € H,;
Q@ xcH VxeH;

© H is closed with respect to the law of composition of G, i.e.,

Vx,y € H x+ye€eH.
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Basic definitions

Subgroup (multiplicative notation)

A subgroup H is a non—empty subset of a group (G, -) which is itself a group with the operation
inherited from that of G.

Equivalently, a subgroup H of G is a subset of G, denoted by H < G, such that
Q 1l e H,;
Q@ x'eH VxeH,

© H is closed with respect to the law of composition of G, i.e.,

Vx,y e H x-ye€H.

Subgroup: properties

| N\

Each group G contains at least two subgroups:
© the group G itself;
@ the trivial subgroup {0} ({1c}) formed only by the identity element of G.

Proper subgroup

A subgroup H of a group G is called proper if H is a proper subset of G, i.e., HC G.
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Basic definitions

The set of even numbers form a proper subgroup of (Z,+). In fact, the sum of two even numbers is
even, 0 (the identity element) is even, and the opp05|te element of an even number is even too.

The integers divisible by a fixed natural number n € N (that is, the integers expressible as the product
between n and a suitable integer) form a subgroup of (Z,+), denoted by nZ = {nz : ne N,z € Z}.
Therefore nZ < Z for each n € N (note that 0Z = {0}).

Let H={-1,0,1,2,3,4,5,6}.
(H,+) is not a subgroup of Z! Also, it is neither a subgroup of Q nor a subgroup of R.

The same holds for (H, -)!

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra



Basic definitions

Group operations

Let H and K be subgroups of a group G. Then:
@ HN K is a subgroup of G;
@ HUK is not, in general, a subgroup of G. HUK is a subgroup of G if and only if H C K or K C H.

Consider the additive group (Z, +) and the two subgroups

A=27, B = 37Z.
We have that AU B is not a subgroup of Z. In fact:
2€ 27 C27ZU3%Z and 3 € 3Z C 27U 3%Z;

but
2+3=5¢2ZU3%Z,

because

5¢27Z  and 5 ¢ 3Z.
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Basic definitions

A field K is a non—empty set on which two binary laws of composition
+: KxK—K and < KxK— K,

called respectively addition and multiplication, are defined such that
@ K is an abelian group with respect to the addition, i.e.,
o Vx,y,z€ K (x+y)+z=x+(y+2);
e 30 € K suchthat VxeK 0+x=x+4+0=x;
o Vxe K I—x€K suchthat x+(—x)=—-x+x=0;
o Vx,y €K X+y=y-+x
@ K — {0} is an abelian group with respect to the multiplication, i.e.,
o Vx,y,z€e K (x-y)-z=x-(y-2);
e d1€K suchthat VxeK 1-x=x-1=x;
oVxeK 3Ix1eK suchthat x-x1=x1-x=1;
e XY=y X Vx,y € K;
© addition and multiplication are connected by the distributive law

(x+y) z=(x-2)+(y-2z) Vx,y,zeK.
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Basic definitions

A subset H of a field K which is closed under addition and multiplication, and containing the opposite
and the inverse of all its elements is a field too, and it is called a subfield of K.

Z,+,-) is not a field;

Q,+,) is a field;

R, +,-) is a field;

Q, +, ) is a subfield of (R, +, ).

Fields and Vector Spaces

| A\

Fields are fundamental in the definition of vector spaces; most of the properties of the latter (existence of
a basis, dimension, subspaces) do not depend on the particular field employed. Moreover, the possibility
of defining a scalar product (and therefore a structure of Euclidean space) depends on the chosen field.
Diagonalization of linear operators is related to the field of the vector space, as it is linked to the
presence of roots of the characteristic polynomial.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra



Vector spaces

Vector space
A vector space V over the field K is a non—empty set of elements vy, vy, ... called vectors, with the
following algebraic structure:

@ there is a mapping
+:VxV -V

(u,v) u+v

such that (V,+) is an additive abelian group;
@ there is a mapping
S KxV -V

(A, v) = Av

which satisfies the axioms:
o VN uek, WYweV (Ap)v = A(uv);
o V\,pekK, VYveV (A + p)v = Av + pv;
o VAeK, VYuveV A(u+v) = Au+ \v;
e Jl1eK : YwveV lv=vl=v. )
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Real vector spaces
A non—empty set V is a vector space over the field R if two binary laws of composition
+:VxV -V, S RxV =V,
(u,v) = u+v, (A, v) = Av
called respectively addition and field multiplication, are defined such that
Q@ Yu,v,weV (u+v)+w=u+(v+w);
Q@ 0V suchthat YueV O04+u=u+0=u;
Q@ VwueV J—uecu suchthat u+(—u)=-u+u=0;
Q VuveV u+v=—v-+u;
Q@ V\pueR, VYueV (Ap)u = A(pu);
Q@ V\ueR, YueV (A+pu=Au+ puu;
@ VAeER, YuveV Au+v)=Au+Av;
Q@ Jd1eR :VueV lu=ul=u
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Vector spaces

The set R” of the n—tuples
u=(u,...,up), ui € R

is a real vector space with the vector addition +: R” x R” — R" and field multiplication
- R x R” — R" defined as:

u+V:(Ul,...,un)+(V17...,Vn):(U1+V1,...7Un+vn)7
Au=X-(ug,...,uy) = (A, ..., up).

In this case, the identity element with respect to the addition is the n-tuple

0,...,0)

and the opposite is the n-tuple

(v, ooy —up).
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Vector spaces

Let C be the set of all continuous real-valued functions f in the interval | C R,
f: 1 =R
If f and g are two continuous functions, also the function f + g defined by
(f +&)(t) = f(t) + &(t)
is continous. Moreover, for any real number A, the function Af defined by
(AF)(t) = Af(2)

is also continuous. Then, C with the above operations is a real vector space.
In this case, the identity element with respect to the addition is the function O defined by

0(t) =0,

and the opposite —f is the function given by
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Vector spaces

Let S be an arbitrary set and V a vector space. Consider all mappings f: S — V and the define the sum
of two mappings f and g as

(f+g)(s) = f(s) + g(s) ses
and the field multiplication as
(AF)(s) = Af(s) seSs.
Then, the set of all mappings f: S — V is a vector space. The identity element is the function f defined

by
f(s) =0, ses.
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Vector spaces

The set of polynomials of degree at most n with real coefficients given by

Ro[x] = {ap + aix + ... + a,_1x" 4+ ax" : a; e RVi€{0,1,...,n}}
is a real vector space with the operations
p(x) + q(x) = (a0 + arx + ... 4+ an_1x"L + a,x") + (bo + bix + ... + by_1x"t + b,x") =
= (ao + bo) + (31 + bl)X + ...+ (a,,_1 + b,,_l)X"71 + (a,, + bn)Xn,

A-p(x)=X-(ag+arx+...+ap_1x" 1+ a,x") =
= Xag + Aarx + ...+ Aa,_1x" L+ Aa,x".

Prove that R3 is a real vector space with the operations +: R3 x R3 — R3 and -: R x R3 — R3 defined
as:

u+v=(up, o, uz) + (v, va,v3) = (u1 + vi, o + vo, uz + v3),
Au=\- (Ul, up, U3) = ()\Ul, )\Ug7 >\U3).
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Establish if R® with the operations +: R3 x R® — R3 and -: R x R3 — R3 defined as:

u+v = (ur, t, u3) + (vi, v2,v3) = (1 + vi, 2 + v, U3 + v3),
Au=A\- (Ul, up, U3) = (/\Ul,)\UQ,O)

is a vector space.

Establish if R? with the operations +: R? x R> — R? and -: R x R? — R? defined as:

u+v=(up,u)+ (vi,v) = (11v2, tov1),

)\'U:)\'(Ul,UQ):(Ui\,Ué\)

is a vector space.
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Vector spaces

Linear combination

Let V be a vector space over the field K, and {v1,...,v,} a family of vectors in V. Then, a vector
v € V is called a linear combination of the vectors v; € V (i = 1,...,n) if there exist some scalars

A; € K such that
vV = Z )\,'V,'.
i=1

If \; =0Vi=1,...,n, then v is a trivial linear combination.
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Vector spaces

1) Consider the following vectors in R3:
wi=(0,0,1), wo=(12,11,-1), ws=(1,-2,1)

and the scalars \; =2, A\, = 1, A3 = 3. Write some possibile linear combinations.

2) In Ry[x] consider the polynomials
p(x) = 3x* 42, g(x)=x-2

with scalars \; =2, A = —1. Write some possible linear combinations.

3) Consider the following vectors in R3:
V] = (1,2,0), Vo = (3, —4,2)

with the scalars \; = 2, A\, = —1. Write all possible linear combinations.
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Vector spaces

4) Write the vector w = (1,0, 2) as linear combination of
vi = (0,2,0), vo = (1,1,0), vz =(0,1,1)

(Solution: A1 = —3/2, A2 =1, A3 =2)
5) Compute the scalars A; (i = 1,2,3) such that the polynomial

q(x) = 3x* + 4x + 2,
is linear combination of the polynomials
pr(xX) =3x> +2x +1, po(x) = —2x>+3, p3(x) =4x>+ 3x.

(Solution: M=-1 =1 A= 2)

6) Establish if the vector w = (0,0, 1) is linear combination of the vectors v; = (1,1,0) and
vo = (1,2,0).
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Vector spaces

Linear independence

A family {v1,...,v,} of vectors is called linearly independent if
Y Avi=0, M€K, v,eV = X\=0 Vi=1,...,n
i=1

The vectors {vy,...,v,} are called linearly dependent in the opposite case, i.e., if there exist some
scalars \; such that

n
Z)\,'V,’ = 0, A € K, V; € V,
i=1

with at least one scalar \; # 0.
Then, at least one of the vectors v; can be expressed as linear combination of the remaining ones.

@ A vector v € V, with v #£ 0, is linearly independent. In fact, the equation Av = 0, with A € K,
implies that A = 0.

@ Two vectors x,y € V are linearly dependent if and only if y = Ax (or x = \y) for some A € K.

v
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@ In R3, the vectors
V] = (].,0,0)7 Vo = (07 1,0), V3 = (0,0, 1)
are linearly independent.
o In R3, the vectors
V1= (1’ ]'7 0)7 Vo = (0707 2)a V3 = (Oa 07 _3)
are linearly dependent.
e In R3, the vectors
Vi = (13 71, 1)7 Vo = (37 132)7 V3 = (173,0)
are linearly dependent.

o Consider the vector space Ry[x] of polynomials of degree at most 2 with real coefficients.
The polynomials
p(x) = x*+ 1, g(x)=x+3

are linearly independent.
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Vector spaces

A family consisting of only one vector v € V is linearly dependent if and only if v = 0. Thus, every
family containing the zero vector is linearly dependent.

Proposition

Every non zero vector in a vector space V is linearly independent.

Proposition

If someone of the vectors vy, ...,v, of a vector space V is a zero vector, then the vectors vy,...,v, are
linearly dependent.

\

Proposition

Let vy,...,v, be vectors in a vector space V over a field K. If k vectors of them, vy, ..., vk, with kK < n,
are linearly dependent, then all n vectors v, ..., v, are linearly dependent.

.
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Proposition
Every subfamily of a linearly independent family of vectors is linearly independent.

Proposition
A family {vi,...,v,} of vectors is linearly independent if and only if every vector w € V can be written
at most in one way as a linear combination of the vectors v;, i.e., if and only if for each linear
combination

W:Z/\,-v,-, ANeEK, vieV
i=1

the scalars A\; (i = 1,...,n) are uniquely determined by w.
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Vector spaces

System of generators

Let V be a vector space over the field K. A subset S = {v1,...,vs} C V is called a system of
generators for V if every vector w € V is a linear combination of the vectors v; of S, i.e.,

W:iA,‘Vh A € K.
i=1

.

@ The whole space V is clearly a system of generators.

o If S C V is a system of generators for V and T C S is a system of generators for S, it follows that
T is also a system of generators for V.

@ For every vector space V # {0} there exist an infinite number of system of generators.

A

How to check if a set of vectors {v1,...,v,} is a system of generators?

Given an arbitrary w € V/, we have to check if there exist n scalars \; € K such that

A1V1 + AoV + ..o+ Ay, = w,

i.e., we have to check if this linear system in the unknowns A1, ..., A\, admits solution.
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Consider the set A = {(0,2),(1,0),(1,1)} C R2. It is a system of generators of R2.
For every vector w = (wy, w,) € R? we can determine \; € R (i = 1,2, 3) such that

(Wl, W2) = /\1(0, 2) aF )\2(1, O) aF A?,(].7 1)
For example, with w = (wy, wa) = (27,4) we can choice
=2  Ie=7 Jg=0

Note that this choice is not unique!
In fact, by considering
=1, A2 = 25, Az =2,

we can have a linear combination that generates the vector w = (27, 4).
If we want to check that A is a system of generators, we have to check if the linear system

A2 + Az = wy,
2M + A3 =w

admits solution for all w € V.
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Vector spaces

Consider the vector space of polynomials of degree at most 2 with real coefficients
Ry[x] = {a+ bx + cx?, with a, b,c € R}.

A system of generator can be the set
{17Xa X2} - RQ[XL

and an arbitrary polynomial p(x) can be written as
p(x) = a+ bx + ox?.
Another system of generators can be the set
{1,x,x%, x + 3x%}.
In fact, an arbitrary polynomial p(x) can be written as

p(x) = a+ bx + cx® + 0(x + 3x3).
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Vector spaces

@ Establish if the family of vectors
{(17 23 0)? (27 57 _2)}

is a system of generators of R3.
@ Establish if the family of vectors

{(1,-1,0,1),(1,0,0,0),(0,1,0,0),(1,—1,1,2)}

is a system of generators of R*.
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Vector spaces

Let V be a vector space over the field K. A family B = {vy,...,v,} of vectors is called a basis of V if it
is a system of generators and v; are linearly independent, i.e., if and only if every vector w € V' can be
written at most in one way as

w:z/\,-v,', AN eK, vieV.
i=1

The scalars )\; are called components of w with respect to the basis {vy,...,v,}.

N,

A basis is a system of generators. The converse is not in general true! A system of generators is a basis
if and only if the vectors are linearly independent.

\
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Vector spaces

Let V = {(a,b,0) : a,b € R} be a vector space over R. Verify that the set of vectors

{(1,1,0),(1,2,0)} c V

is a basis for V.

| \

Proposition
Let S = {vi,...,v,} be a finite system of generators for V, and assume that the vectors vy,...,v,
(r < n) are linearly independent. Then, there exists a basis of V which contains the vectors vy, ..., v,

and is contained in S.
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Vector spaces

@ Every vector space V # {0} admits at least one basis.

o Every vector space V # {0} admits infinite bases.

@ All bases of a vector space V' have the same cardinality (i.e., the number of vectors).
The dimension of a vector space V over the field K, denoted by dimk(V), is the cardinality of a basis of
V. The dimension of a vector space is uniquely defined!

Then, a vector space V/, over a field K, is finite-dimensional if dimg(V) < oo, otherwise is
infinite-dimensional. )
A more efficient method to check system of generators

Based on the concept of dimension of a vector space, we can consider a new method to check if a set of
vectors is a system of generators.

Let V be a vector space over a field K, with dimg(V)=nand S = {vy,...,vx} C V. Then, S'is a
system of generators for V if and only if:

e dimg(V)=n<|S| = k;

@ S ={vy,...,vk} contains n linearly independent vectors.

A
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Vector spaces

The vector space V = {0} has dimension equal to zero, i.e.,

dimg ({0}) = 0.
R" is a finite—dimensional vector space over R, i.e., dimg(R") = n.
The standard canonical basis is given by the vectors

e; = (1,0,0,...,0),
e, = (0,1,0,...,0),

e, = (0,0,...,0,1).
In fact, every vector v = (vi,vs,...,Vv,) € R" can be written as

(va,va,...,vn) = wvi1(1,0,0,...,0) + v»(0,1,0,...,0) + ... + v,(0,0,0,...,1) =

=vie; +wer + ...+ vye,.
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Vector spaces

The set of continuous functions 7: R — [a, b] is a infinite—dimensional vector space.
In fact, if we consider the monomials x, x2, ..., x", the condition

A1X 4+ dox? 4+ Apx" =0

is satisfied only when \; =0 (i =1,...,n) Vn.

A\

The vector space of polynomials of degree at most n with real coefficients
Ro[x] = {ap + aix + ... + ap_1x" P+ ax" : a; e RVi€{0,1,...,n}}

is finite—dimensional over R, i.e., dimg(R,[x]) = n+ 1.
The standard canonical basis is given by the set of n+ 1 vectors (polynomials):

{1,x,x2%,...,x"}.
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Vector spaces

Find the coordinates of the vector w = (1, —1,3,5) € R* with respect to the standard canonical

o

(2]

basis B of R*.
Find the coordinates of the vector w = (3,4) € R? with respect to the basis B of R?, where

B=1{(2,1), (1,2)}.

Verify if the set of vectors
{(1,1), (2,3)}cR?

is a basis of R2.

Verify if the set of vectors

{(1,1), (2,3), (0,1)} cR?

is a basis of R?.

Verify if the set of vectors

{(1,0,1), (1,2,0), (2,2,1)} cR®

is a basis of R3.
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Vector spaces

Subspace

Let V be a vector space over the field K. A non—empty subset U C V is called a subspace of V if U
inherits the structure of a vector space from V (i.e., it is a vector space over the field K with the
operations inherited from V).

A\

Theorem [Characterization of subspaces]

Let V be a vector space over the field K. A non—empty subset U C V is a subspace of V' if and only if
U is closed under addition and field multiplication defined in V/, i.e.,

ut+vel, Yu,v € U, (*)
Au€e U, vVAeK, VYueU. ()

Conditions (x) and (*x) are equivalent to

Au+puv e U, v\ pekK, VuveU.

A\
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Vector spaces

Necessary condition for subspaces

From () it follows that 0y € U. In fact, given A =0 and u € U, we have
0-u=0y €U,

where 0y is the identity element in U with respect to the addition defined in V. But, in a vector space,
the identity element is unique, then
OU =0y =0y cU.

The sets {0} and V are subspaces of V. They are called trivial subspaces.

Property
If U is a subspace of V, then dimg(U) < dimg (V).
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Q Let Sy ={(x,y,z) €R® : x+2y+32z=0; 2x+ z =0} C R3. Check if S is a subspace of R3.
Q Let S, ={(x,y,z) €ER® : x+3y +5z=1;2x+4z=0} CR3. Check if S is a subspace of RS.

| .

Then:
@ the solutions set of a homogeneous linear system with coefficients in a field K is a subspace of K”;

@ the solutions set of a non—homogeneous linear system with coefficients in a field K is not a
subspace of K”;

@ if the subset is defined by a non—linear system, we cannot deduce a priori if it is a subspace.

© Theset S3= {(x,y) € R? : y? =0} is a subspace of R??

Q Theset Sy = {(x,y) € R? : x2+y? =0} is a subspace of R??

Q Theset S5 = {(x,y) €R? : x>0, y >0} is a subspace of R2?

Q Theset Sg = {(x,y) € R? : X =1} is a subspace of R??

@ The set S; = {(x1 + x2,2x1,X%,1) € R* : x1,x € R} is a subspace of R*?
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Vector spaces

Let V be a vector space over the field K, and S = {vy,...,v,} a system of generators for V.
Then, the set of all linear combinations of the vectors v;, i.e.,

span(S) = span(vy,...,v,) = {Z)\,‘V,‘, A €K, i—1,...,n}

i=1

is called the span of {vy,...,v,} (or span of S).
span(S) is a subspace of V, called the subspace generated by S, or the linear closure of S.

B
Q Let V=R and v € R a non zero vector. Compute span(v).
Q Let V=R?and v; = (1,1), vz = (2,2). Compute span(vy,vs).
Q Let V=TR3and v; = (0,0,1), vo = (0,1,0). Compute span(vi,vz).
Q Let V=R3and v; = (1,0,2), vo = (0, —1,0), v3 = (2, —2,4). Compute span(vy,Va,V3).
(

Q Let V=NR*and v; = (7,—4,1,0), vo = (—5,1,0,2). Verify if the vector
w = (1,0,4,8) € span(vy, vs).
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Vector spaces

Let V be a vector space over the field K, {vi,...,v,} a set of linearly independent vectors of V/, and
S =span(vy,...,V,).
If 3w € V such that w ¢ S, then {vy,...,v,,w} is a set linearly independent vectors.

.

Consider n+ 1 vectors vi,...,V,, V,11 in a vector space V over a field K.
Then:
@ span(vy,...,V,) Cspan(vi,...,Vn, Vpi1);
@ span(vy,...,V,) =span(vi,...,Vn,Voi1) if and only if v, 1 € span(vy, ..., v,).

| A\

From last theorem, given vi,...,v,,v,1 € V, we have:
@ if vi,...,v,,v,p1 are linearly independent = span(vy,...,v,) # span(vy,...,Vy, Vai1);
@ if vi,...,V,,V,yp are linearly dependent = span(vy,...,v,) =span(vy,...,Vy, Vyi1).
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Vector spaces

Let us consider the following vectors in R3:
vi = (1,0,1), vy = (—1,3,2), vz = (—3,3,0).
It is immediate to verify that

{V17V2,V3}

is a set of linearly dependent vectors.
But, we have also that

{Vl,Vg}, {Vl,V3}, {Vz,V3}

are sets of linearly independent vectors.
From the previous theorem, it follows that

span(vy, vy, v3) = span(vy,vy) = span(vy,v3) = span(vp,v3).
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Vector spaces

Problem: determine a basis from a system of generators

Let V be a vector space over a field K, with dimg(V) = nand S = {v1,...,vx} C V a system of
generators for V, with kK > n.
In the case k < n, we can distinguish:

o if dimg(V) = n > k, then the set {vy,...,vk} is not a system of generators;
o if dimg(V) = n = k, then the set {vy,..., vk} is already a basis for V.

By excluding the above cases, our aim is to extract a basis from a system of generators, i.e., we want to
determine a maximal subset of linerly independent vectors from the generators.
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Vector spaces

Determine a basis from a system of generators: how to proceed

Let V be a vector space over a field K, with dimg(V) =n, and S = {v1,...,vk} C V a system of
generators for V, with k > n.
Then:

@ Consider the first vector v; € S: if it is v = 0 we exclude it; otherwise, we keep it.
@ Consider the second vector v, € S. We keep it:

o if vo # 0 and vy has been excluded;
o if v have been kept, and vy, v, are linearly independent.

If noone of these cases is satisfied, we have to exclude vs.
© Consider the third vector v3 € S: we keep it if v, vy, v3 are linearly independent.
@ Continue until you run out all vectors in S.

Finally, the set of not excluded vectors forms an extracted basis from the system of generators.
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[
Given the vectors in R3

vi=(2,-1,6), v»=(=6,3,-18), wvs=(1,0,1), wvs=(1,1,-3),

determine a basis for S = span(v, vy, v3,vs) and its dimension.

o Consider vi. We have that v; = (2, —1,6) # (0,0,0), then we keep it.

o Consider now v, = (—6,3, —18), that is not a zero vector. Since v, = —3vy, it follows that v; and
vy are linearly dependent. This implies that we have to exclude vs.

o Consider now vz = (1,0,1). Since v; and v3 are linearly independent (check it!), we keep vs.

e Finally, considering v4 = (1,1, —3), we note that v4 = 3v3 — vy, i.e., v1, V3, vy are not linearly
independent. Then, we have to exclude vj.

We can conclude that a basis for S = span(vy, vo, v3, vy4) is

B = {Vl,V3}, with dImR(S) =2.
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Vector spaces

Given the vectors in R3

Vi= (1,07 _3)7 Vo = (27 1, _5)a V3 = (Oa474)7

determine a basis for S = span(vy, vz, v3) and its dimension.

Problem: determine a basis for a subspace defined by a homogeneous linear system

Let V be a vector space over a field K, with dimg(V) = n, and U C V a subspace of V defined as

U={(a,...,xn) K" : fi(x1,.-., %) =0,...,fm(x1,...,x,) =0},

where f; =0 (i = 1,..., m) are homogeneous linear equations.
We need to:
@ determine solutions of the homogeneous linear system f; =0 (i = 1,..., m);

@ express the solutions as a linear combination of the involved parameters; the vectors appearing in
this linear combination form a basis for the subspace U.
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Given the subspace V of R3 defined as

V={(x,y,2) €R® : x—y+2z=0},

determine dimension and a basis for V.

From the equation defining the subspace V we can write
y =x+2z.
Then, the solution set is made by
(x,x +2z,z) = x(1,1,0) + z(0,2,1),

A basis for V is

with x,z € R.

BV = {(17 170)3 (05 27 1)}

and
dimg(V) = 2.
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Vector spaces

@ Given the vectors in R®
V1= (1?1317171)3 V2 = (2723272,2)7 V3 = (071372,371)3 Vg4 = (132,717432)7

determine a basis for S = span(vy, vz, v3, v4) and its dimension.

@ Determine a basis and the dimension of the subspace V of R3 defined as
V ={(a,b,0), a,beR}
@ Determine a basis and the dimension of the subspace V of R® defined as
V={(a—b,b—c,0,a—c,a—2b+c), a,b,ceR}
@ Determine a basis and the dimension of the subspace V of R> defined as

V = {(x1, %0, X3, X4, %) €ER® : x1 —x3 +2x4 + x5 = 0, x2 + 3x4 + x5 = 0}.
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Vector spaces

Operations between subspaces: Sum

Let U and V be subspaces of a finite—dimensional vector space W. The sum of the subspaces U and V,
denoted by U + V, is defined as

U+V={weW : w=u+v, with ueU, veV}

The sum U + V is a subspace of W, and contains U and V/, as subspaces.

Operations between subspaces: Intersection

Let U and V be subspaces of a finite—dimensional vector space W. The intersection of the subspaces U
and V, denoted by U N V, is defined as

Unv={weW : welU, weV}.

The intersection U N V is a subspace of W.
Furthermore, U N V is a subspace of U and a subspace of V.
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Vector spaces

How to determine dimension and basis of the sum of two subspaces

Let W be a vector space over the field K, U and V subspaces of W, with dimg(U) = s and
dimg (V) = t.
At first, we have to determine

By ={u1,...,us}, By ={v1,...,V¢},

i.e., the two basis for U and V/, respectively.
Then, the set

By UBy = {ul,...,us,vl,...,vt}
is a system of generators for the subspace U + V/, and we can extract a basis from it.
Furthermore, the number of elements of the extracted basis is the dimension of U + V. )
Determine a basis and the dimension of the sum of two subspaces U and V of R* defined as the
following systems of generators

U = span(uy, up), V = span(vy, v,),

where

u; = (3,0,0,0), u; = (0,2,0,0), v; = (0,0,-1,0), vo =(0,7,1,0).
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Vector spaces

We observe that u; and u; are linearly independent, and form a basis for U:

By ={(3,0,0,0),(0,2,0,0)}.
Also the vectors v; and v, are linearly independent, and form a basis for V:
Bv ={(0,0,-1,0),(0,7,1,0)}.
Then, consider the union of the two basis
By UBy ={(3,0,0,0),(0,2,0,0),(0,0,-1,0),(0,7,1,0)},
that is a system of generators of U + V/, and extract a basis from By U By, .

It is
BUJrV = {(37070a O)a (07 2a Oa 0)7 (0,0, _170)}

Since |[Bytv| = 3, we have dimg(U + V) = 3.
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Vector spaces

Determine a basis and the dimension of the sum of two subspaces U and V of R? defined as

U={(x,y,z) ER® : —2x+y =0, x+2z=0},
V={(x,y,z) eR® : 2x+y — z=0}.

A\

Compute a basis By for U and By, for V.
Consider the system of equations defining U:

—2x+y =0,
x+z=0,

whose a possible solution is
y = 2x, zZ=—X.

Then, a generic element of U can be written as

(x,2x,—x) = x(1,2,-1), x € R.
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It follows that a basis for U is

By ={(1,2,-1)}.
Also, a possible solution for the equation defining V is
z=2x+y,
and a generic element of V' can be written as
(x,y,2x+y) = x(1,0,2) + y(0,1,1), x,y € R.

It follows that a basis for V is
BV = {(17 Oa 2)) (07 17 1)}

Then, we consider
BU U BV = {(17 2a _1)7 (1a Oa 2)7 (07 ]-a 1)}

that is a system of generators for the subspace U + V/, and extract a basis for U + V. Since the above
vectors are linearly independent, we have

BU+V = {(L 2, 71)3 (1707 2)3 (07 1, 1)}

It is |Bytv| =3 and dimg(U + V) = 3.
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Vector spaces

Determine a basis and the dimension of the sum of two subspaces U and V of R? defined as

U =span((1,1,-1),(1,2,-2)),
V={(x,y,z) eR® : y—z=0}.

Compute a basis By for U and By for V.
The vectors (1,1, —1), (1,2, —2) are linearly independent, then they are a basis for U, i.e.,

By =1{(1,1,-1),(1,2,-2)}.

Consider the equation defining V:
whose a possible solution is

Then, a generic element of V can be written as

(x,z,z) = x(1,0,0) + z(0,1,1), x,z € R.
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Vector spaces

It follows that a basis for V is
BV = {(17 Oa O)a (07 17 1)}

Then, we consider
By UBy = {(17070)3 (07 1, 1)3 (17 1, *1), (1727 *2)}

that is a system of generators for the subspace U + V/, and extract a basis for U + V.
We have that
(1,0,0),(0,0,1),(1,1,-1)

are linearly independent and
(1)27 _2) = 2(13 1, _1) - (17 07 0)

Then, a basis for U + V is
Bu+v ={(1,0,0),(0,1,1),(1,1,-1)}.

It is |By+v| =3 and dimg(U + V) = 3.
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Vector spaces

How to determine dimension and basis of the intersection of two subspaces defined by system of

generators?

Let W be a vector space over the field K, U and V subspaces of W, with dimg(U) = s, and
dImK(V) =t.
At first, we have to extract

By = {u1,...,us}, By = {vi,...,v:},

i.e., the two basis for U and V/, respectively.
Then, we note that every vector w € UN V if and only if w € U and w € V. This means that w can be
expressed as linear combination of both vectors of the bases By and By, i.e.,

S
w = ZO(,‘U,‘, o € K, (*)
i=1

and

t
W = Zﬁjvj, ,Bj e K.
j=1
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... How to determine dimension and basis of the intersection of two subspaces defined by system of

generators?

It follows that

that can be written as

s t
> ajui =Y By =0,
i=1 j=1

i.e., we have a linear system in the unknowns ¢; (i=1,...,s)and §; (j =1,...,t).
Now, determine the solutions (s + t scalars)

alw",aﬁﬁla"'aﬂt'
Then, we consider the s solutions @j, ..., @ and insert them into (), i.e.,

S
w = E aju;.
i=1

A basis for U N V is determined by expressing the vector w as a linear combination of the involved free
parameters.
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Vector spaces

Determine a basis for the intersection of the following subspaces of R*:

U =span((1,0,3,0),(0,1,-1,1)),
V= Span((l, 1,4, 1)7 (_1, 1,2, 1)3 (0,37 5, 3))

A\

At first we note that the vectors in U and V are linearly independent (separately). Then, bases for U

and V are
BU = {(L Oa 370)7 (Oa 1; _17 1)}7

By ={(1,1,4,1),(-1,1,2,1),(0,3,5,3)}.

We have that every vector w € R* belongs to U N V if and only if w € U and w € V. This implies that
there exist the scalars a1, az, 581, 82, 83 € R such that

w = ;(1,0,3,0) + @»(0,1,-1,1) = (a1, @2, 301 — 2, 2),
w = Bl(la 1a47 1) + ﬁ2(_17 1a 27 1) + B?:(Oa 3) 573) =
= (81 — B2, B1 + B2+ 303,401 + 282 + 503, B1 + B2 + 303).
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By equating both right sides, we obtain

ay =1 — B
az =1+ B2+ 3063
a1 —ap =401+ 202+ 5063
az = 1+ B2+ 303,
whose solution is
B1 = =302 — 4p%s,
ap =1 — P2 = —4082 — 403,
az =1+ 2+ 363 = =202 — Bs.
Now, substitute a; and ap into w = ;(1,0,3,0) + a»(0,1, —1,1), that is

w

(_4’62 - 4ﬁ3)(17 07 3a 0) + (_262 - B?))(Oa 17 _17 1) =
(—402 — 45,0, 1203, — 12(33,0) + (0, =22 — 33,202 + B3, —2P2 — fB3) =
(—4B2 — 4833, —2p2 — B3, —1062 — 1153, =232 — 33).
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Then, we have
w = (=45, — 4P33, =20 — B3, 1082 — 11535, =20 — f33) = —2(4,2,10,2) — 55(4,1,11,1).
It follows that a basis for UN V is
Bunv = {(4,2,10,2),(4,1,11,1)},

with

dimg(UN V) = 2.
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Vector spaces

How to determine dimension and basis of the intersection of two subspaces defined by homogeneous

linear equations?

Let W be a vector space over the field K, with dimg(W) = n, U and V subspaces of W defined as

U={(a,...,xn) K" : A(x,..., %) =0,...,%(x,...,x,) =0},

V:{(Xla"'axn)EKn : gl(Xla"'aXn):Oa"'agt(X17"'aXn):0}a
where i =0 (i=1,...,s) and g =0 (j =1,...,t) are homogeneous linear equations.
We need to:

@ construct the homogeneous linear system made by s + t equations

(X, oy Xn) =0,y fo(x1, ..., %) =0,
gl(X17"'aXn):07"'agt(Xla"'aXn):Ov

and determine a solution set;
@ extract a basis from the solution set of the homogeneous linear system (by expressing the solutions

as a linear combination of the involved parameters; the vectors appearing in this linear combination
form a basis).
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Determine a basis for the intersection of the following subspaces of R3:
U={(xy,2) €R® : x—y+2z=0},
V={(x,y,z) €R® : x—3y =0, x+5y+8z=0}.
Solution. Construct the linear system
x—y+2z=0,
x—3y =0,
x+5y+8z=0.

We note that only the first and second equation are independent, then we have the system
X—y+2z=0, x—3y =0,
with two equations in three unknowns. A possible solution is

x = 3y, z=—y.
Then
(xy,2) = By,y,—y) =¥(3,1,-1),
and a basis for UN V is Byny = {(3,1,—1)}.
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Vector spaces

Theorem [Grassmann]

Let W be a finite—dimensional vector space over a field K, and U and V be subspaces of W.
Then

dimg (U + V) = dimg (V) + dimg (V) — dimg(U N V).

Let W be a finite—dimensional vector space over a field K, and U and V be subspaces of W.
The vector space W is called direct sum of U and V, and is denoted by W = U@ V, if and only if

Q U+V=VWw,
Q@ UnV=1{0}.
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Vector spaces

Let W be a finite—dimensional vector space over a field K, and U and V be subspaces of W, with W
that is direct sum of U and V.
Then,

W=UEPV = dimg(W) = dimg(U) + dimg(V).
Poof |

In fact, from Grassman theorem:

dimg (W) = dimg(U + V) = dimg(U) + dimg(V) — dimg(UN V) =
= dImK(U) aF dimK( V) —0= dImK(U) T dImK(V)

v

The converse is not in general true, i.e.,

dimg (W) = dimg (V) + dimg(V) = W = U@ V.
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I
e@rmple
Let W = R3 and the subspaces of R3
U =span((1,2,0),(1,1,1)), V = span((0, 0, 3)).
The bases for U and V are
By ={(1,2,0),(1,1,1)},  Bv ={(0,0,3)},
then dimg(U) = 2 and dimg(V) = 1. A system of generators for U + V' is
By U By ={(1,2,0),(1,1,1),(0,0,3)},
that are linearly independent. Then, a basis for U + V is
Byv ={(1,2,0),(1,1,1),(0,0,3)},

i.e., dimg(U + V) = 3. Also, U + V is a subspace of R® with dimension 3, then U + V = R3.
From Grassman formula, it is

dim(U N V) = dimg(U) + dimg(V) — dimp(U + V) =2+1—3 =0,

ie, R®=U@V since UNV = {0} and U + V = R3.
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Vector spaces

Let W =R3 and
U= span((l, 0, 0), (07 0, 1)), V = span((O, 0, 3))

The bases for U and V are

By = {(170,0),(0,07 1)}7 By = {(07073)}a

then dimg(U) =2 and dimg(V) = 1.
We have
3 = dimg(R?) = dimg (V) + dimg(V) =2 + 1,
but R3 is not direct sum of U and V, since UN V # {0}. In fact, for k # 0 every vector (0,0, k)
belongs both to U and V. The same can be proved by using Grassman theorem!
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Vector spaces

In fact, considering
By u By ={(1,0,0),(0,0,1),(0,0,3)},

we can extract a basis for U + V/, that is
BU+V - {(17070)a (0707 1)}7

ie., dimg(U+ V) =2.
Then, from Grassman formula

dimg(U + V) = dimg(U) + dimg(V) — dimg(U N V),

we have

2=2+1—dimg(UN V)= dimg(UN V) =10
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Vector spaces

Let W be a finite—dimensional vector space over a field K, and U and V be subspaces of W, with W
that is direct sum of U and V. Then,

W = U@ V <= every vector w € W can be written in at most one way as

w=u+v, withuelU, veV.

Let W be a finite—dimensional vector space over a field K, and U and V be subspaces of W.
Let By = {u1,...,us} be a basis for U and By = {v1,...,v;} a basis for V.
Then,

W:U@V@BUUBV:{ul,...,us,vl,...,vt} is a basis for W.
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(RS
Verify if W = U@ V, with W = R3 and the subspaces of R3

U = span((1,0,0), (0,1, 0)), V = span((2,0,0),(0,0,1)).

The bases for U and V are
By = {(1,0,0),(0,1,0)}, By ={(2,0,0),(0,0,1)},
then dimg(U) = dimg(V) = 2. A system of generators for U + V is
By U By ={(1,0,0),(0,1,0),(2,0,0),(0,0,1)},
and extracting a basis from it, we have
Buiv ={(1,0,0),(0,1,0),(0,0,1)},
iie., dimg(U + V) = 3. Also, U + V is a subspace of R® with dimension 3, then U + V = R3.

But, R? is not direct sum of U and V, since U N V # {0}.
In fact, from Grassman formula

dimg(U N V) = dimg(U) + dimg(V) —dimg(U+ V) =2+2—-3=1.
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- R,
Verify if W = U@ V, with W = R* and the subspaces of R*

U = span((1,0,0,0)), V = span((0,—1,2,3)).

The bases for U and V are By = {(1,0,0,0)}, By = {(0,-1,2,3)}, then dimg(VU) = dimg(V) = 1.
From the previous theorem
4 = dimg(R*) # dimg(U) +dimg(V) =1+ 1 =2,

and we can conclude that R? is not direct sum of U and V. For completeness, compute a basis for
U+ V and UN V. A system of generators for U + V is made by the vectors

By UBy ={(1,0,0,0),(0,-1,2,3)},

that are linearly independent. Then, By.v = {(1,0,0,0),(0,—1,2,3)}, i.e, dimg(U + V) =2. Then,
U + V is a subspace of R* with dimension 2, and we have

4 = dimg(R*) # dimg(U + V) =2= U+ V #R*%.

We also note that U N V = {0}. In fact, from Grassman formula
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(RS
Verify if W = U@ V, with W = R2 and the subspaces of R2

U={(x,y) €R? : x+y=0}, V ={(x,y) € R? : x =0}.

Let us look for a basis of UN V. Consider the system
x+y=0, x = 0.

It has only the solution x =y =0, then UN V = {0} and dimg(U N V) = 0. Then, look for bases of U
and V. A solution to x + y =0 is y = —x. An element of U can be written as

(x,—x) = x(1,-1).

Then
By ={(1,-1)}, dimg(U) = 1.
An element of V can be written as
(Oa)/) = y(oa 1)
Then

By =1{(0,1)},  dimg(V)=1.
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We have
2 = dimg(R?) = dimg (V) + dimp(V) =1+1=2,

and we can conclude that R> = U@ V.
Also, using Grassman formula,

dime(U + V) = dimg(U) + dimg(V) — dimp(UN V) =1+1—0 =2,

we confirmt that U + V = R?, and a basis for U + V is determined extracting it from the system of
generators

By UBy = {(1a _1)7 (Oa 1)}

Since the two vectors are linearly independent, we have

BUJrV = {(1’ 71)3 (0’ 1)}
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Vector spaces

@ Given the subspaces of R*

U= {(x1,x2,x3,x3) ER* : x; —x4 =0, xo+ x4 =0},
V = {(x1,x0,x3,%4) €ER* : x; +2x0 4+ x4 =0, x3 — x4 = 0},
determine dimension and a basis for U, V, U+ V and UN V.

@ Given the standard canonical basis {e;, e>,e3,e,} of R* and the subspaces

U = span(ey, ey, e3),
V = span(e; — ez, e, + e3,ey),

determine dimension and a basis for U, V, U+ V and UN V.
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Vector spaces

@ Given the subspaces of R3
U=1{(2a,b,a) €eR3 : a,bc R},

V ={(c,0,c) eR® : ceR},
determine dimension and a basis for U, V, U+ V and UN V.

@ Given the subspaces of R3
U= Span((la ]-a 71)7 (1a 717 0))a

V={(x,y,z) €R® : x+z=0},
determine dimension and a basis for U, V, U+ V and UN V.
© Let V and U be subspaces of R* such that

dimp(U) =3,  dimg(V) = 2.

Is it possible that UN V = {0}?
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Vector spaces

Supplementary subspaces

Let W be a finite—dimensional vector space over a field K, and U and V be subspaces of W.
The subspaces U and V are said to be supplementary (or complementary) in W if and only if

W:U@v.

Operations between subspaces: Union

Let W be a finite—dimensional vector space over a field K, and U and V be subspaces of W. Then, the
union of the subspaces U and V/, denoted by U U V, is defined as

vuv={weW : welU or we V}.

In general, the union U U V is not a subspace of W!

UU V is subspace of W <— U C V or V C U.
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Vector spaces

Example: union of subspaces
Let W = R? and the subspaces of R?

U={(x,y) eR? : x=0}, V={(x,y) €R? : y=0}.

By definition,
vuV={weW : welU or we V},

ie.,
UUV ={(x,y)€R*> : x=0 or y =0}.

Verify if UU V is subspace of R2.

Check the first property of subspaces. For all vectors u,v € UU V/, we want to prove thatu+v € UU V.
Letu=(0,1) € U and v=(1,0) € V.

It is

(1,0) + (0,1) = (1,1).

But (1,1) ¢ U and (1,1) ¢ V; then, it follows that (1,1) ¢ UU V.
The set U U V is not subspace of R? since it is not closed with respect to the addition!
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Bilinear form

Let V and W be vector spaces over a field K. A bilinear form is a function

frVx WK
(v, w) = (v, w)

that is linear in V and in W, i.e.,
o f(Au+ pv,w) = Af(u,w) + pf (v, w), Yu,v,e V., Ywe W, Y\ ueK;
o f(v,\u+ puw) = Af(v,u) + uf(v,w), Yv,e V, Yu,w e W, Y\, u e K.
In particular, if V = W, the function f: V x V — K is called bilinear form over V.

Properties
If f: Vx W — K is a bilinear form, then:

o f(0y,w)=0=17(v,0p), YvevV,Vwe W.
If f: VxV — Kis a bilinear form over V, then:

o f is nondegenerate if f(v,w)=0 Ywe V = v=0;
o f is symmetric if f(v,w) = f(w,v) Yv,w € V;

@ f is skew—symmetric or antisymmetric if f(v,w) = —f(w,v) Yv,w e V.
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Euclidean spaces

Scalar product

Let V be a vector space over the field R, and consider the binary operation

2 VxV—=R
(u,v) —»u-v

with the following properties:

(1) (Au+pv) -w=2Au-w+ puv-w, Yu,v,we V, VA, peR (linearity);
(2) u-v=v-u, Yu,v € V (symmetry);

(3 uu>0 YueV,andu-u=0ifandonlyifu=0 (positive—definiteness).

This operation is called scalar product (it can be alternatively denoted by (u,v)), and the vector space V
is said to be Euclidean. The above properties imply also that

e YueV u-0=0-u=0;
o u-(Av+puw) =Au-v+ pu-w, Yu,v,w € V, VA u € R;
@ (utv) - (u+v)=u-u+22u-v+v-v, Yu,ve V.
Hence, a scalar product on a real vector space is a positive—definite symmetric bilinear form.
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Euclidean spaces

Example: canonical scalar product

The binary operation -: R" x R” — R defined as:
n
u-v:(ul,...,u,,)-(vl,...,vn):Zu,-v,-: uvi+ ...+ upvy,
i=1
is a scalar product in R", and it is called the canonical (or euclidean) scalar product.
.

Let V = R3. Verify if the following binary operations are scalar products:

u-v=uivy + Urvo + U3 v3;
= vy + U1Vo — UV + UpVo + U3V3;

=2tV — Vo — vy + 3o + Uz vs;

—Uu1Vvi + U1Va + UV — UpVp — U3V3;

= wvi + U1Vo + Uavy + UpVa + U3V3;

€ €« €« <€ <€ <

©000O06O0
€ cc c ¢

=5uvy +4urvz + Supve + 2upv3 + duzvy + 2u3v + Suzva.

A,
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Euclidean spaces

Orthogonal vectors

Let -: V x V — R be a scalar product in a real vector space V.
Two vectors u,v € V are said to be orthogonal with respect to the assigned scalar product in V if

u-v=_0.

\

Set of orthogonal vectors

Let -: V X V — R be a scalar product in a real vector space V.
A family of vectors {vy,...,v,h} C V is said to be a set of orthogonal vectors with respect to the
assigned scalar product - in V if

vi-v;i=0 Vi#£j i,j=1,...,m.

.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra



Euclidean spaces

Orthogonal basis

Let -: V X V — R be a scalar product in a real vector space V.
A set of vectors {vy,...,v,} C V is an orthogonal basis for V if and only if:

Q {vi,...,v,} is a basis for V;
Quvi-vi=0 Vi#j i,j=1,...,n.
o
The standard canonical basis B = {e;, e, e3} of R3 is an orthogonal basis of R? with respect to the
canonical scalar product. In fact;

e;-e;=(1,0,0)-(0,1,0)=1x0+0x1+0x0=0,
e;-e;=(1,0,0)-(0,0,1)=1x0+0x0+0x1=0,
e -e3=(0,1,0)-(0,0,1) =0x0+1x0+0x1=0.

\
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B

Let V be a real vector space with dimg(V) =n, and -: V x V — R be a scalar product in V. Let

{v1,...,vm} C V be a set of non-zero vectors, with m < n.
If {v1,...,Vm} is a set of orthogonal vectors = {v1,...,vn} is a set of linearly independent vectors.
Let {vy,...,vp} orthogonal non zero-vectors. We have to prove that

AMVi+ ...+ AV =0 — X\; =0 Vi=1,...,m.

Multiplying both sides by v;:
v,-~()\1v1+...+/\mvm) :V,'~0,

i.e., due to linearity of scalar product,
AV Vi + ...+ Vv, =0.
Since vj -v; =0 Vi # j and v; # 0 Vi, the previous relation reduces to
Aivi-v; = 0.

Due to the positive definiteness of the scalar product, it follows that A\; =0 Vi=1,..., m.
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Euclidean spaces

The converse is not in general true:

If {v1,...,vn} is a set of linearly independent vectors = {v1,...,v,,} is a set of orthogonal vectors.

In fact, consider V = R3 and the canonical scalar product in R3.

The vectors
vi = (1,3,0), vo =(0,2,1)

are linearly independent but not orthogonal.
It is

vi-va=(1,3,0)-(0,2,1)=1x0+3x2+0x1=6%#0.

A

Given a scalar product in a real vector space and a set of linearly independent vectors, we will see how to
construct a set of orthogonal vectors!

v
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Let V be a real vector space with dimg(V) =n, and -: V x V — R be a scalar product in V. Let
{v1,...,Vp} C V be a set of non-zero vectors.

If {v1,...,v,} is a set of orthogonal vectors = {v,...,v,} is an orthogonal basis of V.

Let V = IR3 and the canonical scalar product -: R x R3 — R defined as

Xy = (x1,x2,X3) - (y1,¥2,¥3) = x1y1 + xoy2 + X3y3.

Prove that the vectors
Vi :(17*130)’ V2 :(1,1,0), V3:(07031)

form an orthogonal basis of R3.
Solution. Since dimR(R3) = 3 and we have 3 vectors, we only need to show that v, vy, v3 are
orthogonal. It is:

vi-va=(1,-1,0)-(1,1,0) =1 x 1+ (=1) x 1+ 0 x 0 =0,
vi-vs=(1,-1,0)-(0,0,1) =1 x 0+ (=1) x 0+ 0 x 1 =0,
vo-vs=(1,1,0)-(0,0,1) =1 x0+1x0-+0x1=0.
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Euclidean spaces

Let V = R3 and the following vectors
v; = (1,0,0), v, = (0,1,0), vz = (0,1/2,1).

Then:
@ verify that B = {v1,v,,v3} is a basis of R3;
@ verify that the binary operation -: R3 x R3 — R defined as

Xy = (x1,x2,X3) - (Y1, ¥2,¥3) = X1y1 + 2x0y2 — Xoy3 — X3Y> + 2x3y3

is a scalar product in R3;

@ verify if B is an orthogonal basis with respect to the scalar product -.
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Euclidean spaces

Cauchy-Schwarz inequality

Let V be a real vector space and -: V x V — R be a scalar product in V, i.e.,, V is an Euclidean space.
Then, for all u,v € Vit is:

lu-v|?> < (u-u)(v-v).
Let u# 0 and v # 0 (if u =0 or v = 0 the inequality is trivially satisfied).
Then, for all A e R it is

(Ut ) - (u+Av) = v-v+2u-v+u-u>0.

Since this is an algebraic second degree equation in \ that is non-negative, it follows that the
discriminant have to be less than or equal to zero, i.e.,

lu-v]?—(u-u)(v-v) <0

\
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Euclidean spaces

In a Euclidean space V/, we can introduce the norm of a vector as a function

I-]: V—>R
v v

that satisfies the axioms:
e |v|>0, WeYV,
@ |lv]| =0 if and only if v =0;
o |lav| = o] ||v|, VaeR, WweV;
o lutvil < flull + v]l, Vuve V.

The triangle inequality is equivalent to

[Jull = [lvll < flu=v]l,  Vu,veV.

In fact:

lull = flu = v+ v|| < [Ju = v] + [lv]| = [Ju]] = [v]| < [u—v]|.
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Euclidean spaces

In a Euclidean space V/, with dim(V)gr = n, a class called L, norms (or Holder norms) are well-defined

for any parameter p € [1, c0):
n H
Ivllp = (Zl‘ﬁl") :
i=1

o If dim(V)r =1 all L, norms, with p > 1, are equal to the absolute value.

Properties of L, norms

@ For p <1 the class L, is not a norm, since the triangle inequality is violated.
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Euclidean spaces

For p=1:
n
vl =D [vil-
i=1

v
2-norm or Euclidean norm

For p = 2:

v
0o-norm or max norm
For p — oc:

Vil = fim, {1l = max v
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In the plane, a norm can be rapresented by a unitary ball. Let V = R? be an Euclidean space, and
S={xeR?: |x]| =1}

the unitary ball. Graphically, we have

-1

with the unitary ball in 1-norm, the , and the unitary ball in max-norm.
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Euclidean spaces

Induced—norm by a scalar product

Let V be a real vector space and -: V x V — R be a scalar product in V, i.e.,, V is an Euclidean space.
Then, the induced-norm by a scalar product is the function || - ||: V — R defined as

vl = Vo~V

Induced—norm: properties

@ If || - || is an induced-norm, the Cauchy-Schwarz inequality can be written in the form
u- v < ul] f[v].
@ The triangle inequality can be proved by means of the Cauchy-Schwarz inequality; in fact:

lutvP=u+v) - (u+v)=u-utv-vi2u-v=
= [lull® + [Iv][* + 2u - v < [jull + [Iv][* + 2llu] []v]| = ([lull + [v])*.

@ The 2-norm is an induced-norm by the euclidean scalar product; in fact:

Iv]]> = v12—|—...—|—v3:\/v1v1—|—...—|—v,,v,,:\/(vl,...,v,,)-(vl,...,v,,):\/v~v.
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Euclidean spaces

Equivalent norms

Let V be an Euclidean space. Two norms || - ||1, || - ||2, defined in V/, are said to be equivalent if there
exist a, 8 € R, with @ > 0 and 8 > 0, such that

allvlly < flvl2 < Blvli, Ve V.

Property

| A\

If dimg(V) = n < 400 all norms that can be defined in V are equivalent; in particular, 1-norm, 2-norm
and oco-norm are equivalent.

N
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Euclidean spaces

Let V = R3 and consider the scalar product defined as

Xy =2x1y1 — X1y2 — Xoy1 + 2X0)0 + X3Y3.

The induced-norm by this scalar product is given by

IX[| = VX x = V2x1x1 — x1%0 — Xox1 + 2X0Xp + X3X3 = \/2)(12 — 210 + 2X3 + X3.

For example, if x = (1,0,1), it is

||x||:\/2x12—2x1x2—|—2x22—|—x32:\/2><12—2><1><0+2><02+12:\/2—|— — e

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra



Normalized vector

Consider an Euclidean space, and a norm || - ||: V — R.
If [[v]] =1, then v is called a normalized or unit vector.

How to normalize a vector?
The normalization of a vector v € V, with v # 0, needs to determine a vector u € V such that ||u|| =1

and u, v are linearly dependent.

The normalized vector of v is given by
v

u=_—.
vl
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Euclidean spaces

Let V = R? with the euclidean scalar product. Normalize the vector v = (3, —4).

vl = Vv -v=1/(3—-4)-(3,—4) = /3 x3+(—4) x (—4) =v09+16 = V25 =5.

v 1 3 4
= —_— - —4 — —_— —_— .
il B AC Q’Q

Then,

It is |Jul] = 1. In fact:

3 4 3 4 9 16
|M—ﬁ7—¢grﬁ~grﬁ— S _vi-1
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Euclidean spaces

Let V = R3 and consider the scalar product defined as

Xy =2x1y1 — X1y2 — Xo¥1 + 2Xo¥2 + X3¥3.

Normalize the vector v = (1,1, 0).

vl = Vv -v=1+/(1,1,0)- (1,1,0) =vV2xIx1-1x1-1x14+2x1x1+0=v2-2+2=+2.

Then,
v 1

- (S L)

Itis ||ul| = 1. In fact:

1 1 1 1 1 1 1 1 1 1 1 1
%) (v ve) = \2svs ey vave T iveva O

v
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Euclidean spaces

Set of orthonormal vectors

Let V be an Euclidean space and || - ||: V — R be a vector norm.
A family of vectors {vi,...,vnh} C V is said to be a set of orthonormal vectors if

Qvi-vi=0 Vi£j i,j=1,....,m;
Q |vil=1 Vi=1,...,m.

v

Orthonormal basis

Let V be an Euclidean space and || - ||: V — R be a vector norm.
A set of vectors {v1,...,v,} C V is an orthonormal basis for V if and only if:

Q {vi,...,v,} is a basis for V;
Qvi-vi=0 Vi£j i,j=1,...,n
Q |vil=1 Vi=1,...,m.
The standard canonical basis of R”

B ={(1,0,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}

is an orthonormal basis with respect to the euclidean scalar product.
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[ —
The basis of R3
B ={(2,0,0),(0,2,0),(0,0,2)}

is an orthogonal basis with respect to the euclidean scalar product, but is not orthonormal. We can
obtain and orthonormal basis by dividing each vector by the corresponding norm. It is:

lvill = V22 + 02 + 02 = V4 = 2;
vall = V02 +22 +02 = V4 =2
[vs|| = V02 + 02 422 = /4 =2.

Then, the corresponding orthonormal vectors are

w200\ _
o= g = (33:3) = woon

_va (0 20\ )
o= = (332) - @10

V3 002
" = (2’2’2) (0,0,2)
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[ —
Q Let V = R3, and the scalar product defined as

Xy =2X1y1 — X1y2 — Xoy1 + 3Xo)2 + X3¥3.

Given the vectors vi = (1,1,1), v = (2,0, 1), vz = (0,—3,3), and denoting with || - || the
induced norm by the scalar product, compute ||v1 ]|, |[vz||, [lvs]|-

@ Let V =R? and consider the scalar product defined as
Xy =2xay1 — X1y2 — Xoy1 + 3x2)2.

Using the induced norm, normalize the vector v = (1,1).

@ Let V =R* and consider the euclidean scalar product. Using the induced norm, normalize the
vectors v; = (1,1,1,1), vo = (—1,0,2, —2), v3 = (2,3v/2,0,1/3), and verify if v;, vo,v3 are
orthogonal.

@ Let V =1R?, and the scalar product defined as

Xy = 6x1y1 + x1y2 + Xxoy1 + X2)>.

11 2 7
Prove that the vectors v; = (, ) and v, = <—, > form an orthonormal basis in R?.
3'3 3v5' 3v5
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Euclidean spaces

@ Let B be a basis for R® defined as
B={(1,-2,0),(-1,0,-2),(0,—2,—1)}.
Verify if B is an orthonormal basis with respect to the following scalar product:
Xy =5x1y1 + 4x1y3 + 5x0y2 + 2x0y3 + 4x3y1 + 2x3y2 + 5x3y3.

@ Let B be a basis for R? defined as
B = {(170)7 (27 1)}7

and the scalar product
XY =X1y1 — 2X1Y2 — 2X0y1 + 5xo¥5.

Verify if B is an orthogonal basis with respect to the introduced scalar product and normalize it.
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Problem: determining orthonormal basis

Let V be an Euclidean vector space, and {ei,...,e,} a basis for V. Given two vectors u =Y. ; uje;
and v=Y"", vie;, their scalar product is

n n n n
u-v= E uie;j | - E Vi€ = E E u,-vj(e,- . EJ).
i=1 j=1 i=1 j=1

It is always possible to construct a new basis {fy,...,f,} for V provided that

fi-f=0; Vij=1,....n,

i.e., we are looking for an orthonormal basis {f1,...,f,}. In such a case, the scalar product becomes:
n n
u-v:g E ujvi(fi - f;) = E g uivjdj = E uivj,
i=1 j=1 i=1 j=1

i.e., it reduces to the euclidean scalar product, and the induced 2—norm (euclidean norm) is naturally
recovered:

fJull = Vu-u= ZZu;uj(f;-fj): ZZU:‘UJ‘%’: Z“:z
i=1

i=1 j=1 i=1 j=1
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Euclidean spaces

Gram-Schmidt orthonormalization

Let V be an Euclidean vector space, and {ey,...,e,} a basis for V. Then, we can construct an
orthonormal basis {fy,...,f,}, i.e., such that

f,-~fj:<5,-j, Vi,_j:].,...7n.

Let =
fi=—:,
llexll
£ = e; — (ex-f1)fy
ez — (e2 - f1)fu|’
f= 37 (e3-fi)fi — (es-Fo)fs
es — (es - fi)fi — (es- f2)fo||’
£ - e, — (e,, o fl)fl — (e,, 0 f2)f2 = 000 = (e,, 0 f,,_l)f,,_l
" ||e,, — (e,, o fl)fl — (en 0 fz)fg = 500 = (e,, 0 f,,,l)f,,,ln '
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I
@ Given the vectors in R3
Vi = (17 170)3 Vo = (23070)7

determine an orthonormal basis for S = span(vy, v2) with respect to the euclidean scalar product.

@ Given the vectors in R*
V1 = (17170a0)a V2 = (1507070)a V3 = (0a05071)7

determine an orthonormal basis for S = span(vy, vz, v3) with respect to the euclidean scalar product.
@ Orthonormalize the basis B of R3

B = {(*13 Oa 1)7 (13 Oa 2)7 (07 ]-a 0)}

with respect to the euclidean scalar product.
@ Orthonormalize the basis B of R3

B= {(07 07 1); (27 07 O)a (O, *la 0)}

with respect to the scalar product defined as

Xy = x1y1 + X1y3 + X2 + X3y1 + 2x3y3.
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Linear operators

Linear operator

Let U and V be vector spaces over the field K, with dimg(U) = n and dimg (V) = m.
Then, a mapping @, say

¢ U—->V
u— d(u)
is a linear operator if
d(u+v) = d(u) + d(v), Vu,v € U,
d(\u) = \d(u), VYAeK, VueU.

Theorem [Characterization of linear operators]

Let U and V be vector spaces over the field K, with dimg(U) = n and dimg (V) = m.
Then, a mapping ®: U — V is a linear operator if and only if

S(Au+ pv) = AP(u) + pd(v), YA\ ueK, Yuvel.

This means that a linear operator preserves vector space operations.
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Linear operators

Necessary condition for linear operators

From
®(Au) = Ad(u), VAeK, Vuel,

it follows that
®(0y) =0y.

In fact, given A =0 and u € U, we have
®(0y) = ®(0u) =0d(u) =0y,

where 0y and Oy are the identity elements in U and V with respect to the addition.
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Linear operators

Verify if the following mappings are linear operators:
Q ¢: R3 = R3, with
®(x,y,2) = (2x +y,3y,2 +5);

Q ¢: R? — R2, with

O(x,y) = (x,3y);
Q@ ¢: R?2 5 R, with

o(x,y) = x> +y;
Q@ ¢: R3 — R3, with

®(x,y,2z) = (x +2y,x +4z,y — 32);
Q@ ¢: R3 > R, with
d(x,y,z) = x + 3z.
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Linear operators

Kernel of a linear operator

Let #: U — V be a linear operator, with dimg(U) = n and dimg (V) = m.
The kernel of ®, denoted by ker @, is a subspace of U defined as

ker® = {u e U: ¢(u) =0}.

Image of a linear operator

Let : U — V be a linear operator, with dimg(U) = n and dimg (V) = m.
The image of ®, denoted by Im®, is a subspace of V defined as

Im® ={veV:v=9(u), withu e U}.

v

Let ®: U — V be a linear operator, with dimg(U) < oco.

@ The linear operator @ is injective if and only if ker ® = {0}.
@ The linear operator ® is surjective if and only if Im® = V.
o dimg(U) = dimg(ker ®) + dimg (Im®).
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Linear operators

Linear isomorphism
Let ®: U — V be a linear operator, with dimg(U) = n and dimg(V) = m.
If ® is bijective:
@ & is called linear isomorphism;
e & 1.V — Uis a linear isomorphism, and &1 is called inverse isomorphism;

@ U and V are isomorphic vector spaces;

@ the image under ® of a basis in U is a basis in V.

Definitions
o If : U — U is a linear operator, ¢ is called endomorphism of U.
o If &: U — U is a linear isomorphism, ® is called automorphism of U.
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Linear operators

Representation of linear operators

Let : U — V be a linear operator, with dimg(U) = n and dimg(V) = m. Let {e1,...,e,} and
{f1,...,fm} bases for U and V/, respectively. Then, given u € U and v € V, we have

n
u= E uje;, uj € K,

m

vV = Z V,'f,', V; € K,

i=1

and, from ®(u) = v, it follows that

d(u) = Z uiej | = z": uid(ej) = z’": vifi = v.
j=1 i=1

But, every vector ®(e;) can be written as a linear combination of the vectors f; (i =1,...,m), ie,
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Linear operators

Representation of linear operators
We obtain

izm:ufﬂjf"_zvlflﬁz Z f,:O

j=1 i=1 =

In other words, the components of a vector u € U are transformed according to the law
n
V,':ZT//'UJ', i:l,...,m.

The linear operator ® determines a m x n matrix T = (T};), where i counts the rows and j counts the
columns. Conversely, every m x n matrix T determines a linear operator.
Thus, after choosing bases of U and V, a matrix T defines the action of the linear operator ® on any

vector, with the rule
m
e)=> Tifi, j=1...,n
i=1

The matrix T is called the representation of the linear operator .
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Linear operators

How to determine the linear operator associated to a matrix

A linear operator ®: U — V maps a column vector u = (uy, ..., u,) into the column vector

Tiuy + Tooup + - -+ Typup
Toruy + Tootp + -+ + Topup

vV = Tu = S Km?
Tmlul 4 7—m2u2 SFooogF Tmnun
where the matrix T is
Tiu T -+ Tig
- Tor Ty - Ty —
= . . i € .
Tml 7—m2 e 7—mn

Then, every matrix T € K™*" defines a linear operator ®: K" — K™ such that for every vector u € K"
itis ®(u) = Tu e K”.

The number of columns of T is egual to dim(K") = n, whereas the number of rows of T is egual to
dim(K™) = m.
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Linear operators

Determine the linear operator defined by the matrix

The number of columns of A is egual to dim(Rz) = 2, whereas the number of rows of A is egual to
dim(R3) = 3. This means we have to consider a generic vector x = (x1, %) € R? and compute Ax:

1 2 . X1 + 2x
Ax= |4 5 (Xl) = | 4x + 5%
7 8 2 7x1 + 8%

Then, we obtain the linear operator ®: R?> — R3 defined by the matrix A:

¢(X1,X2) = (X1 + 2x0,4x1 + 5x0, X1 + 8X2).

Matteo Gorgone
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Linear operators

Determine the linear operator defined by the matrix

2 2
A=|[1 0 3 | eRr3*3
0 4
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Linear operators

How to determine the matrix associated to a linear operator

Let ®: U — V a linear operator, with dimg(U) = n and dimg(V) = m, and the basis By = {e1,..., e}
and By = {fy,...,f,} for U and V, respectively.

It is useful to remember the following steps for constructing the matrix corresponding to a linear
operator in an assigned basis:

e compute ®(e;), i.e., the images of the vectors of the basis By.

@ the images CD(ej) must be expressed as a linear combination of the vectors of the basis By/,i.e.,
m
o(ej) =D Tifi;
i=1

@ the coordinates of the obtained vectors are the columns of the associated matrix.

@ The matrices associated to a linear operator are as many as the bases, i.e., they are infinite!

@ Linear operators act on vectors, whereas the associated matrices act on the coordinates with respect
to the bases.

@ The associated matrix to ®: U — V has dimg (V) = m rows and dimg(U) = n columns.
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Linear operators

Let ®: R3 — R? be a linear operator defined by
(x,y,z) = (x+y,2).

Determine the matrix associated to ¢ with respect to the basis:

o
Brs = {(1,0,1),(1,0,0),(1,1,1)},

Bgz = {(07 1)7 (17 1)};

Brs = {(1,0,0),(0,1,0),(0,0,1)},
Br: = {(1,0),(0,1)}.
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Linear operators

Let ®: R? — R? be a linear operator defined by

P(x,y) = (x—y,2x+y).

Determine the matrix associated to ¢ with respect to the basis:

o

B2
Bl

By
Bl

{
{

{
{

(1,2),(1,0)},
(1,1),(0,3)};

(1,0),(0, 1)},
(1,2),(0,1)}.

Matteo Gorgone
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Linear operators

Linear operators defined by image of vectors

Let U and V be vector spaces over the field K, and ®: U — V a linear operator.
The linear operator ® is defined by the images of vectors {uy,...,u,} € U if it is written as

O(u;) =v; Vi=1,...,n

)
v

The linear operator ®: R? — R3 with

®(1,0) = (1,2,3),  (0,5) = (4,0,7),

is defined by images of vectors.
Let U and V be vector spaces over the field K, with dimg(U) = n and dimg (V) = m, and

By ={e1,...,e,} a basis for U, and {vy,...,v,} vectors of V. Then, there exists a unique linear
operator ®: U — V such that
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Linear operators

How to determine the matrix associated to a linear operator defined by image of vectors

Let U and V vector spaces over the field K, with the basis By = {ei,...,e,} and By = {fy,...,f,} for
U and V, respectively. Consider a linear operator : U — V defined by the images of vectors

{uy,...,u,}, say
O(u;) =v; Vi=1,...,n.

Suppose that {ug,...,u,} is a basis for U, so that we are sure there exists a unique linear operator
®: U — V. We need to compute ®(e;). This task can be done in the following way:

@ express vectors of the basis of U as a linear combination of the vectors {uy,...,u,}, ie,
n

ej:ZT,-ju,-, j:l,...,n;

@ apply ¢ to the vectors e;:

®(ej) = (Z TU"') = z": Tij®(u;) = z": Tivi, j=1....m
i=1 i=1

o finally, by expressing ®(e;) as linear combinations of the vectors {fy,...,f,}, we obtain the
coordinates entering the j—th column of the associated matrix.
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Linear operators

Let ®: R? — R3 be a linear operator defined by the image of vectors

®(1,1) = (1,2,0),
®(2,1) = (~1,3,1).

Determine the matrix associated to ® with respect to the basis:

o
BR2 = {(170)7 (0’ 1)};

Brs ={(1,1,1),(1,0,0),(0,—-1,1)};

Bg2 = {(1,0)7 (Oa 1)}7
Brs = {(1,0,0),(0,1,0),(0,0,1)};
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Linear operators

Let ®: R? — R3 be a linear operator defined by the image of vectors

®(3,-1) = (1,-1,2),
®(1,2) = (-2, -1,2).

Determine the matrix associated to ® with respect to the basis:

o
Bgz = {(47 1)’ (_378)}7

Brs = {(1,0,0),(0,1,0),(0,0,1)};

Bg2 = {(1,0)7 (Oa 1)}7
Brs = {(1,0,0),(0,1,0),(0,0,1)};
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Operations with linear operators

Sum of linear operators

If f: U— V and g: U — V are two linear operators, then also their sum f + g: U — V is a linear
operator, which is defined by

(f + 8)(x) = f(x) + &(x),

to which corresponds the sum matrix of the matrices of  and g.

Product of linear operators with scalars

If f: U— Vis linear operator and A € K, then the map Af: U — V, defined by (Af)(x) = A\(f(x)), is a
linear operator, to which corresponds the product of the matrix of f with the scalar A.

Composition of linear operators

|

If f: U— V and g: V — W are two linear operators, then also their composition go f: U — W is a
linear operator, which is defined by
(g o F)(x) = &(f(x)).

The matrix of the operator g o f is the matrix product of the corresponding matrices g and f.

|

@ The null matrix corresponds to the null operator 0: x — 0.

@ The identity matrix corresponds to the identity operator /: x — x.
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Matrices - Operations

Definition
Given a matrix A= (a;) e K™*" (1=1,...,m, j=1,...n), mx nis thesizeof A. f m=n, Ais a
square matrix and n is the order of A.

Addition
The sum of two matrices A, B € K™*" is the matrix C € K™*" C = A+ B, given by the elements

| A\,

cU:aU-+b;j, i=1....m j=1...,n.

Properties:
o Addition is commutative: A+ B =B+ A, VA B € K™*",
e Addition is associative: (A+ B)+ C=A+ (B+ C), VA B,C e K™,

Product with scalars

| \

The product of a scalar A and a matrix A € K™*" is given a matrix with the elements

(Aa)j=Aaj, i=1,...,m, j=1,....n.
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Vector spaces of matrices

The set of all matrices of a fixed size forms a vector space!
Let K™*" denote the set of m x n matrices with entries in the field K. Then, K™*" is a vector space
over K, with the matrix addition and product with scalars.

Properties

| A\

@ The identity element is the zero matrix.
o dimg(K™*") = m X n.

@ The concepts of linear independence, system of generators and basis do not change; we have to
take into account that every element of the vector space K™*" is a matrix.

Dimensions and canonical basis for vector space of matrices

Let K = R. Then, the canonical basis of R™*" is the set given by the m x n matrices
Ej = (e5) € R™*"

such that all elements are zero except the element e; which is equal to 1.
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Consider the vector space R3*2 (its elements are the rectangular matrices with 3 rows and 2 columns).
We have dimg(R3*?) = 3 x 2 = 6.
The canonical basis is formed by the 6 matrices

Ei = 5 Epp =

Ex = : E3 = ; E3 =

OO O OO+
O O O OO
— OO O OO
OO O O o
OO O O+~ O
_ OO O OO
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Matrix operations

Matrix-matrix product
The product of two matrices A € K™*P, B € KP*" is the matrix C € K™*", C = AB, given by the
elements

P
Cij = E a,-kbkj7 i:1,...,m, j:1,...,n.
k=1

Properties:
@ Matrix product is associative: (AB)C = A(BC);
@ Matrix product is distributive: (A+ B)C = AC + BC and C(A+ B) = CA+ CB;

@ Matrix product is (in general) non commutative: AB # BA.

Matrix-vector product
The product of a matrix A € R™*P and a vector u € RP is the vector v € R™, v = Au, given by the
elements

P
Vi = E ajk Uy, i:l,...,m.
k=1
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Matrix operations

Transposition of a matrix
The transpose of a matrix A € K™ is the matrix A7 € K™ such that a] = a; (i=1,...,m,
Jj=1,...,n).
Properties:
o (AT) = A  VAeKmn
o Linearity: (AMA+ uB)T = MAT + uBT, VA, B € K™" VX u €K,
o (AB)T =BTAT,  VAe K™ P VB e KP*".

Identity matrix

]IEK"X”:H:((SU) ihj=1,...,n.

O € K"™*" such that all entries are 0.
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Matrices

Upper triangular matrix

A € K™ " is an upper triangular matrix if aj =0 Vi>j, i, j=1,...,n.

Lower triangular matrix

A € K™ " is a lower triangular matrix if aj =0 Vi<j, i,j=1,...,n.

Diagonal matrix

A € K" " is a diagonal matrix if a; =0 Vi#j, i,j=1,...,n.

A submatrix of a matrix is obtained by deleting any collection of rows and/or columns.
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Matrices

A € K™ " is a symmetric matrix if aj = a; Vi,j=1,...,n, ie, A= AT,

Skew-symmetric matrix

A € K™ " is a skew-symmetric matrix if aj = —a;; Vi,j=1,...,n, i.e, A= — AT

Invertible matrix

A € K"™" is an invertible matrix if there exists B € K"*" such that AB = BA=1.
B is called the inverse matrix of A and is denoted by B = A~1.
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Matrices

The trace of a matrix A € K"*" is given by

tl’(A) = zn: aji.
i=1

Properties:
@ the set of matrices A € K"*" such that tr(A) = 0 is a vector space;
o tr(A+ B) = tr(A) + tr(B), VA, B € K™
o tr(A\A) = Atr(A), VA e K, VA € K™";
o tr(A) =tr(AT), VA € Kn<n,
e tr(AB) = tr(BA) VA € K™*" VB e K™™.
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S ———

To each matrix A € K"" we can associate the determinant as a unique function det: K"*" — K such
that:

o det(AB) = det(A) det(B), VA, B € K™,
o det(l) =1,
o det(A) # 0 if and only if A is invertible.

Laplace expansion

The determinant of a matrix A € K"*” can be computed by the recursive formula

det(A) = S (—1)*HayMy,  Vj=1,...,n,
i=1

or, equivalently
n

det(A) = > (-1)Ya;My,  Vi=1,...,n,
j=1
where M;; is the (i, j)-minor, i.e., the determinant of the submatrix of A obtained by removing the i-th
row and the j-th column of A. The term C; = (—1)"/Mj; is called the cofactor of a; in A.
The computational cost is O(n!).
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Determinant: properties

Given A € K™
o det(\A) = A" det(A), VA eK;
o det(AT) = det(A);
1
o det(A™l) = m;
o if Ais a (lower or upper) triangular matrix then det(A) = N;_; a;;;
@ interchanging any pair of rows or columns of a matrix multiplies its determinant by —1;
@ adding a scalar multiple of one row (column) to another row (column) does not change the value of
the determinant;
o det(A) =0 if
- some (row) column is such that all its entries are zero;
- two rows (columns) are proportional;
- some row (column) can be expressed as a linear combination of the other rows (columns).

Let A€ K™ " and k an integer with 0 < kK < m, and k < n. A minor or order k of A is the determinant
of a k X k submatrix obtained from A by deleting m — k rows and n — k columns.
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Cofactor matrix

Given A € K" the cofactor matrix C of A is the matrix whose entries are the cofactors of A, i.e.,

Cj = (1) My, ihj=1,...,n.

Adjugate matrix

| A

The adjugate (or classical adjoint) matrix of A € K"*" is the transpose of the cofactor matrix C, i.e.,
adj(A) = CT, with components

adJ(A)U = Cji - (_]‘)i+j/\/ljl'7 laJ = 17 EREERLE

Inverse matrix

A matrix A € K" is invertible if and only if det(A) # 0.
The inverse of the matrix A is the adjugate matrix of A times the reciprocal of the determinant of A, i.e.,

| A\

ATl = adj(A).

det(A)

Property: (AB)™! =B~ 1AL

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 134/201



Orthogonal matrix

A € K™" is an orthogonal matrix if AT = A1 that means AAT = ATA=1.
Properties: det(A) = 1 or det(A) = —1.

The rank of a matrix A € K™*", denoted by rank(A), is the maximum order of the not null minors of A,
i.e., the maximum order of the square submatrices which can be extracted from A so that their
determinant is not null.

Equivalently:

@ rank(A) is the maximum number of linearly independent rows of A;
@ rank(A) is the maximum number of linearly independent columns of A;
@ rank(A) = dimg(Im®), with ¢: K" — K™ such that ¢(u) = Au.
It follows that
0 < rank(A) < min{m, n}.
Properties:
@ rank(A) = 0 if and only if A is the null matrix;
e rank(A) = rank(AT);
o if rank(A) = min{m, n}, A is said to be full rank;
@ if m = n and det(A) # 0, then rank(A) = n, i.e., the rank coincides with the order of A.
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Rank-nullity theorem

Let ®: U — V be a linear operator between two vector spaces U and V over a field K, with
dimg(U) < oo, i.e., U is finite-dimensional.
It is
dimg (U) = dimg (ker®) + dimg (Im®).
In the vector space of matrices K”*", we associate to each matrix A € K™*" a linear operator
®: K" — K™ such that ®(u) = Au.
Since rank(A) = dimg(Im®) and n = dimg(K") is the number of columns of A, the rank-nullity theorem
reads

n = dimg (ker®) + rank(A).
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Rank of a matrix by means of determinants

Given A € K™*n:

@ let iy = min{m, n}. Compute all minors of order /1. If there exists at least a non-zero minor of order
i1, then rank(A) = iy; otherwise, it is rank(A) < i, and go to next step;

@ let ih = i1 — 1, and compute all minors of order i,. If there exists at least a non-zero minor of order
iy, then rank(A) = . If this is not true, it is rank(A) < />, and we need to reiterate the process;

@ the algorithm stops when we find a non-zero minor, and the rank is egual to the order of the
non-zero minor.

The number of all minors of different orders can be great even for a matrix of not large dimension. For
example, a matrix of size 4 x 5 has 5 minors of the fourth order, 40 minors of the third order, 60 minors
of the second order and 20 minors of the first order (minors of the first order coincide with elements of a
matrix), i.e., the matrix has 125 minors. However, such a method of determining the rank of a matrix is
useless due to a great number of computations!

\
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Bordering minor

Let A€ K™*" and consider a submatrix M of A of order k, with k < min{m, n}.
A bordering minor of A is the determinant of every submatrix of A of order k + 1 obtained by adding a
row and a column to the submatrix M.

Bordering theorem (Kronecker)

Let A€ K™*" and k < min{m, n}. We have:
rank(A) = k if and only if there exists a non-zero minor of A of order k and all its bordering minors of
order k + 1 are equal to zero.

Bordering algorithm

@ Find a non-zero minor M of order k.

@ Compute all its bordering minors: if all bordering minors are equal to zero, the algorithm stops, and
the rank of the matrix is equal to the order of the minor M. Otherwise, go to next step.

o If we find a non-zero bordering minor M’ of order k + 1, then compute all bordering minors of order
k + 2, i.e., repeat the described cycle of computations.

There will be finitely many such cycles and the number of such cycles doesn't exceed the number of
rows and columns.
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Leading coefficient

For each row in a matrix, if the row does not consist of only zeros, then the leftmost non-zero entry is
called the leading coefficient (or pivot) of that row.

Row echelon form

A matrix is in row echelon form if:
@ all rows consisting of only zeros are at the bottom;

@ the leading coefficient of a non-zero row is always strictly to the right of the leading coefficient of
the row above it. )

Reduced row echelon form
A matrix is in reduced row echelon form if:
@ it is in row echelon form;

o all the leading coefficients are equal to 1;

@ in every column containing a leading coefficient, all of the other entries in that column are zero.
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This matrix is not in row echelon form:
i 1 dp 41 az as i
0 ai 2 d4q as
0 1 0 1 a4
| 0 0 a 0 0 |
This matrix is in row echelon form: _
1 dp 41 a2 as
0 0 2 d4q as
0 0 0 1 ag
|0 0 0 0 a7 |
This matrix is in reduced row echelon form:
1 0 dai 0 bl
0 1 ar 0 b2
0 0 0 1 b3
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Gaussian elimination

Gaussian elimination consists of a sequence of operations performed on the rows of a matrix in order to
transform it into an upper triangular form, i.e., in row echelon form.
This method can also be used to compute:

o the rank of a matrix;

@ the determinant of a square matrix;

@ the inverse of a matrix (if it is invertible).
There are three types of elementary row operations:

© swap the positions of two rows;

@ multiply a row by a non-zero scalar;

© replace a row with the sum of that row and a multiple of another row.
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Gauss algorithm

Let A e Km™*",
@ Choose the leftmost column Ci, with 1 < k < n with at least a non-zero entry. Set as a pivot the
element
max |a,-k|.
1<i<m

@ If the pivot is not in the first row Ry, swap R; with the row containing the pivot.

@ Substitute the R; (i > 1) row with a linear combination of the row R; and that containing the pivot
in such a way the entries below the pivot are all zero, i.e.,

Ri — Ri + mix Ry,

ajk

where my = — .
Akk

@ Repeat the process considering the submatrix obtained by removing the row and column containing
the pivot, until a row echelon form is reached.
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Determinant with Gauss elimination

After reducing a matrix A € K"*" into a upper triangular matrix B, we have to take into account:
@ each swap of rows changes the sign of the determinant;

o if a row is multiplied by a scalar A, then the determinant of the reduced matrix is equal to the
determinant of A multiplied by the scalar A;

@ substituting a row with a linear combination of that row with another one does not change the
value of the determinant.

Let d be the product of the scalars by which the determinant has been multiplied, using the above rules.
Then, the determinant of A is the quotient by d of the product of the elements of the diagonal of B, i.e.,

n .
det(A) = izlb"

The computation of the determinant using this procedure is the least demanding system known from the
computational point of view (polynomial growth O(n®) instead of factorial O(n!)).

Rank with Gauss elimination

Let A€ K™*" and reduce it to a row echelon form. The rank of the matrix A is equal to the number of
pivots of the obtained row echelon matrix.
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Inverse matrix with Gauss-Jordan elimination

Given A € K", row reduction can be used to compute its inverse matrix:

@ create an augmented matrix with the left side being the matrix A and the right side the n x n
identity matrix I, i.e., an n x 2n block matrix [A|I];

@ using row operations, determine the reduced row echelon form of the n x 2n block matrix [A|T];

@ the matrix A is invertible if and only if the left block can be reduced to the identity matrix I; in this
case, the right block of the final matrix is A~!, i.e., the result is a matrix [I|A~?].

If the algorithm is not able to reduce the left block to I, then A is not invertible.
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Matrix norm

In the vector space K™*", we can introduce a matrix norm as a function

I K™ R
A Al

that satisfies the axioms:
o ||A] >0, VAeKm™nm,
e ||A|l =0 if and only if A= O;
o [|AA] = [ ||All, YA eK, VA e Km™*n,
o [A+BI <Al +BIl, VA BeK™,
o ||AB| < ||Al|IBll, VAeK™<P VB eKP*"
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Matrix norm

Operator norm

Let || - ||o be a vector norm on K" and || - ||g be a vector norm on K™. Since any m x n matrix A € K™*”"
induces a linear operator ®: K" — K™, we can define the induced norm (or operator norm) in K™*" as

[Ax][s
23|

1Allas = sup{ x € K" with x # o} |

This norm measures how much the mapping induced by A can stretch vectors.

Matrix norms induced by vector L,-norms

The vector L,-norms induce the operator norms || - ||, defined as

A
[All, = sup { ||||x)|(|||p : x € K" with x # 0} :
p
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Matrix norms induced by vector L,-norms

Matrix norm induced by 1-norm

m
Al = @ﬁ‘é‘n; 2.
=

Matrix norm induced by co-norm

Properties:
° Al = AT loo;
o if A= AT then ||A|; = || A]lco-

Matrix norm induced by 2-norm (Spectral norm)

1All2 =/ p(A*A),
where p is the largest eigenvalue of the matrix A*A, and A* denotes the conjugate transpose (the
transpose if A € R"*").
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Matrix norms induced by vector L,-norms

Example: matrix norms induced by vector L,-norms

Given the matrix

-3 5 7 1
A=|2 6 4 2],
0 2 8 -1
we have:
3
1AL = 12%4; Ja| =
=max(|-3|+2+0;5+6+2;7+4+8;1+2+|—1|) = max(5;13;19;4) = 19,
4
|Alloo = 123532 2] =
J:

=max(|-3|+5+7+1;2+6+4+2;0+2+8+]|—1|) = max(16;14;11) = 16.
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Matrix norm

Consistent matrix norms

A matrix norm || - || on K™*" is called consistent with a vector norm || - ||, on K" and a vector norm
|- 1lg on K™ if
lAx]| s < | Al X[/ VA e K™" Vx € K".

In the special case with m = n and a = 3, the norm || - || is also called compatible with || - |-

All induced norms are consistent by definition!
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Entry-wise matrix norms

Entry-wise matrix norms p-norm

Entry-wise matrix norms treat an m X n matrix as a vector of size m - n, and use one of the familiar
vector norms.
For p € [1, c0):

P

Ao = { > layl”

i=1 j=1

Entry-wise p-norms are different from the induce L,-norms!
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Entry-wise matrix norms

For p =1, we have the entry-wise 1-norm defined by:

1Al =D " layl-

i=1 j=1

Frobenius norm

For p = 2, we have the Frobenius norm defined by:

m n

IAllF =

i=1 j=1

>3

Entry-wise co-norm (max norm)

For p — oo, we have the entry-wise co-norm or max norm:

[ Allmax = max |aj]-

1<iSm,1<j<n

Matteo Gorgone
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Entry-wise matrix norms

Example: entry-wise matrix norms

Given the matrix
-3 57 1
A=12 6 4 2|,
0 2 8 -1
we have:
3 4
AL =" lagl = =3/ +5+7+1+2+6+4+2+0+2+8+| 1| =41,
i=1 j=1
3 4
AlF =D D 2= V32 +52+72+12 422462+ 42+ 22+ 02 + 2 + 82 + 12 = V213 ~ 14,6,
i=1 j=1
Allmax = _ max __ [aj| =8.
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Linear systems

Definition
A linear system is a collection of linear equations, involving the same variables, that must be verified all

together.

General form
A general system of m linear equations with unknowns x; € K (j = 1,..., n) can be written as

aiXxi + awpxp + ... + aipXp = by,
a2 Xy + apxp + ... + axXp = bo,

amX1 + ameXo + ... + amnXp = bm,

where a; e K (i=1,...,m, j=1,...,n) are the coefficients of the system, and b; e K (i =1,...,m)
are the constant terms. In components, the linear system reads

n
E ajjixj = bj, i=1,...,m.
=1

A
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Linear systems

The linear system can we written in the matrix form

Ax = b,
where
a1 412 - din
a1 a2 - dap mxn
A= e K™*1 X =
ami dm2 amn

X1 by
X2 [)2
e K", b=
Xn bm

A is called coefficient matrix or incomplete matrix, whereas x and b are the vectors of the unknowns and
constant terms, respectively. We can associate to the system Ax = b also the complete matrix (or

associated matrix, or augmented matrix) [A|b]:

aiy - aw | b
[Alb] =

dmi1 - dmn bm

e KmX (n+1) )

Matteo Gorgone
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Linear systems

Solution of a linear system

A n-tuple (xi,...,x,) € K" is a solution of the system if it satisfies all m equations. The set of all
possible solutions is called the solution set.
For a linear system three cases may occur:

@ the system has infinitely many solutions;
@ the system has a single unique solution;

@ the system has no solution.

Geometric interpretation
The geometric interpretation of a linear system depend on the number of the unknowns:

@ n = 2 = each linear equation determines a line in the two-dimensional space. Because a solution of
a linear system must satisfy all the equations, the solution set is the intersection of these lines, and
is hence either a line, a single point, or the empty set;

@ n = 3 = each linear equation determines a plane in three-dimensional space, and the solution set is
the intersection of these planes. The solution set may be a plane, a line, a single point, or the
empty set;

@ n > 3 = each linear equation determines a hyperplane in the n-dimensional space. The solution set
is the intersection of these hyperplanes, and is a flat, which may have any dimension lower than n.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 155/201



Linear systems

Indipendence

The equations of a linear system are independent if none of the equations can be derived from the
others. When the equations are independent, each equation contains new information about the
variables, and removing any of the equations increases the size of the solution set. For linear equations,
logical independence is the same as linear independence.

If a linear system admits at least one solution, then it is called consistent (or compatible); otherwise, it is
inconsistent (or incompatible, or impossible).

Equivalent systems
Two systems are said to be equivalent if and only if they have the same solution set.

Homogeneous linear system
If b =0 Vi=1,..., m, the linear system is called homogeneous.
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Linear systems

Solution set for homogeneous systems

@ A homogeneous linear system is always compatible, in fact the n-tuple (xi,...,x,) = (0,...,0) is a
solution, called trivial solution.

@ The solution set of a homogeneous linear system with n unknowns and coefficients in K is a
subspace of K”. In fact:

Q ifx=(x1,...,x,) € K"and y = (y1,...,¥n) € K" are two vectors representing solutions to a
homogeneous system, then the vector sum x +y = (x1 + y1,...,%, + yn) € K" is also a
solution to the system;

Q if x=(x1,...,X,) € K" is a vector representing a solution to a homogeneous system, and
A € K is any scalar, then Ax = A(xq, ..., x,) € K" is also a solution to the system.

o Let &: K" — K™ defined as
d(x) = Ax.

We have that ker(®) = {x € K" : ®(x) = 0} is the solution set for the homogeneous system
Ax =0 and Im(®) = {y e K™ : y = ®(x), with x € K"} is generated by the columns of A.
Due to rank-nullity theorem, the dimension of the solution set for homogeneous systems is

dimg (ker(®)) = n — rank(A).

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 157/201



Linear systems

Relation to nonhomogeneous systems

There is a close relationship between the solutions to a linear system Ax = b and the solutions to the
corresponding homogeneous system Ax = 0. If u is any specific solution to the linear system Ax = b,
then the entire solution set can be described as

{u+v: vis any solution to Ax = 0}.

Geometrically, the solution set for Ax = b is a translation of the solution set for Ax = 0.
This reasoning only applies if the system Ax = b admits solution. This occurs if and only if the vector
b € Im(®), where ®: K" — K" is the linear operator defined as

d(x) = Ax.

In fact, Im(®) is generated by the columns of A, and therefore b € Im(®) if and only if the span of the
columns of A contains b, i.e., if and only if the space generated by the columns of A equals the space
generated by the columns of [A|b]. This is equivalent to require that the matrices A and [A|b] have the
same rank (that is the Rouché-Capelli theorem). In such a way, since the the solution set for Ax = b is
obtained from a translation of the solution set for Ax = 0, the dimension of the solution set of the
system Ax = b is equal to the dimension of the solution set of the associated homogeneous system

Ax = 0, i.e., the dimension of both solution set is dimg (ker(®)) = n — rank(A).
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Rouché-Capelli theorem

A linear system Ax = b, with A € K™*" x € K" and b € K™, admits solution (is compatible) if and
only if
rank(A) = rank(A|b),

i.e., the rank of its coefficient matrix A is equal to the rank of its augmented matrix [A|b]. The solution
set is a subspace of K" with dimension n — rank(A).
In particular:

o if rank(A) = rank(A|b) = n, the system admits a unique solution;

o if rank(A) = rank(A|b) < n, the system admits co”~""k(4) solutions depending on n — rank(A)

parameters.
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Methods for solving linear systems

Elimination of variables

Let Ax = b be a compatible linear system, with A € K™*" x € K" and b € K™. The simplest method
for solving the system Ax = b is to repeatedly eliminate variables.
This method can be described as follows:

© solve the first equation with respect to a variable in terms of the other variables;

@ substitute this expression into the remaining equations; this yields a system of equations with m — 1
equations and n — 1 unknowns;
© repeat until the system is reduced to a single linear equation; two situations may occur:

o if rank(A) = rank(A|b) = n, the system Ax = b admits only one solution, and the obtained
linear equation involves only one unknown; solve this equation with respect to the involved
unknown, and then the remaining unknowns are determined by using backward substitutions;

o if rank(A) = rank(A|b) < n, the system Ax = b admits 0o ""k(4) solutions depending on
n — rank(A) parameters; in the last equations there are n — rank(A) unknowns that cannot be
eliminated and the remaining ones can be expressed in terms of these n — rank(A) unknowns.
Choosing as free parameters a set of n — rank(A) unknowns, the co”~""kK(4) solutions can be
determined by means of backward substitutions.
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Methods for solving linear systems

Cramer's rule for square systems

Consider a system of n linear equations with n unknowns, represented in matrix form as follows:
Ax = b,

with
di1 - din X1 by

A= .. | ekK™ x=|:1]ekK" b=1|:|ecK"
apl - ann Xn bn
If det(A) # 0, the system Ax = b has a unique solution, whose values for the unknowns are given by:
d .
. — et(A,),
det(A)

where A; is the matrix formed by replacing the i-th column of A by the column vector b.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 161/201



Methods for solving linear systems

Cramer's method is suitable for computing the solution of n x n linear systems only if n is very small. In
practice, the method requires the computation of n + 1 determinants of n x n matrices. Applying
Laplace expansion, each of these requires n! multiplications, for a total of (n+ 1)! multiplications.
Alternatively, the n + 1 determinants can be computed by means of the Gauss algorithm.

Cramer's rule for rectangular systems

Consider a compatible system of m linear equations with n unknowns, represented in matrix form as
Ax = b,

where A € K™*" x € K", and b € K™.
If rank(A) = rank(A|b) = r < n, the system admits co”~" solutions that can be computed by means of
Cramer's rule with the following steps:
o let A’ be the submatrix of A associated to a non-zero minor of order r;
o delete from the original system the equations corresponding to the rows of A which are non
contained in A’, and assign as free parameters the n — r unknowns corresponding to the columns of
A that are not contained in A’;

@ thus, we obtain a square system that can be solved applying the Cramer's rule.
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Methods for solving linear systems

Gauss elimination

Let Ax = b be a linear system of m equations with n unknowns, where A € K™*" x € K" and b € K™.
In Gaussian elimination, the linear system Ax = b is represented by the augmented matrix [A|b], that
will be modified by using elementary row operations until it reaches a row echelon form. Because these
operations are reversible, the obtained augmented matrix [A|b] always represents a linear system that is
equivalent to the original one. Applying the Gauss algorithm, the augmented matrix [A|b] is reduced to a
row echelon form, and two situations may occur:

@ if one or more rows of the reduced matrix are in the form (0...0|k), with k # 0, the system is
incompatible;

@ otherwise, the system is compatible and it admits co”~" solutions, where n is the number of the
unknowns, and r is the number of pivots of the reduced matrix.

If the system is compatible, we need to:
@ construct the linear system corresponding to the obtained row echelon matrix;
@ assign the role of free parameter to the n — r unknowns that do not correspond to the pivots;

© determine the solutions of the system proceeding with the backward substitutions.
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Methods for solving linear systems

Backward substitution for triangular systems

Backward substitution is a procedure of solving a linear system Ax = b of n equations with n unknowns,
with A € K"™" x € K", b € K", and A is an upper triangular matrix (row echelon form) whose diagonal
elements are not equal to zero. Since the matrix A is triangular, this procedure of solving a linear system
is a modification of the general substitution method and can be described using simple formulas.

A similar procedure of solving a linear system with a lower triangular matrix is called forward
substitution. The backward substitution can be considered as a part of the Gaussian elimination method
for solving linear systems.

Backward substitution: algorithm

The backward substitution algorithm can be represented as

by
Xp = )
ann
bi— 7y 3
=i+1 ‘U7 .
X = L= ., Vi=n-—1,...,1.

A
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Methods for solving linear systems

Forward substitution for triangular systems

Forward substitution is a procedure of solving a linear system Ax = b of n equations with n unknowns,
with A € K™" x € K", b € K", and A is a lower triangular matrix whose diagonal elements are not
equal to zero. Since the matrix A is triangular, this procedure of solving a linear system is a modification
of the general substitution method and can be described using simple formulas.

Nevertheless, the structure of the forward substitution for a lower triangular matrix is similar to the
structure of the backward substitution.

A,

Forward substitution: algorithm

The forward substitution algorithm can be represented as

by
X1=—,
ait
i—1
bi — Zj:l aijXj .
Xi = , Vi=2,...,n

N\
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Methods for solving linear systems

How to proceed - Homogeneous linear systems

The homogeneous linear system Ax = 0, with A € K™*" and x € K", is always compatible (the
complete matrix coincides with the incomplete matrix), and we have to compute rank(A).
Then:

Q if rank(A) = n (full rank), the system admits only one solution, i.e., the trivial solution
x=(0,...,0);

@ if rank(A) = r < n, the system admits co”~" solutions that can be determined with the suitable
known methods.

How to proceed - Non-homogeneous linear systems

For a non-homogeneous linear system Ax = b, with A € K™*" x € K" and b € K™, we have to check if
the system is compatible by using the Rouché-Capelli theorem.
Then:

@ if rank(A) # rank(A|b), the system does not admit solution;

@ if rank(A) (

@ if rank(A) =

In the cases (2) and (3), the solutions are determined by using the suitable known methods.

= rank(A|b) = n (full rank), the system admits only one solution;

rank(A|b) = r < n, the system admits co”~" solutions.
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Linear operators

Dimension for kernel and image

Let ®: U — V a linear operator between the vector spaces U and V over the field K, with dimg(U) = n
and dimg (V) = m. The representation of ® is the matrix A € K™*" such that

d(x) = Ax, x € K"

We have that ker(®) = {x € U : ®(x) = 0} is the solution set for the homogeneous system Ax = 0.
Choose a basis for U and V/, respectively,

By = {uy,...,u,}, By ={vi,...,Vvn}.

Due to rank-nullity theorem, the dimension of the kernel of ® is equal to the dimension of the solution
set for homogeneous systems, i.e.,

dimg (ker(®)) = n — rank(A).

and the dimension of the image of ® is given by

dimg (Im(®)) = rank(A).
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Basis for kernel

o If rank(A) = n, then dimg(ker(®)) = 0, i.e., ker(®) = {0}, and we do not need to find a basis;

o If rank(A) = r < n, then dimg(ker(®)) = n — r, and we determine co”~" solutions of the system
Ax = 0 which depend on n — r free parameters; the recovered solutions must be expressed as linear
combinations whose coefficients are the free parameters. The vectors of such linear combinations
are a basis By, = {s1,...,Sk}, with k < n, for the solution set of the homogeneous system.

Two cases need to be distinguished:
@ U =1R" and Bg- is the canonical basis of R" = B, is a basis for ker(®);
@ U #RR" or B~ is not the canonical basis of R” = the i-th vector basis of ker(®) is determined
by a linear combination of the vectors By = {uy,...,u,} whose coefficients are the

components of s;.

Basis for image
Compute rank(A) = k. Then, construct the set B¢c = {cy, ..

independent columns of A.
Two cases need to be distinguished:

@ V =R™ and Bgn~ is the canonical basis of R™ = B¢ is a basis for Im(®);

@ V #R™ or Brm is not the canonical basis of R™ = the i-th vector basis of Im(®) is determined by
a linear combination of the vectors By = {vi,...,vn} whose coefficients are the components of c;.

.,Ck}, with k < n, where ¢y are the linearly
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Vector spaces

Change of basis matrix

Let V be a vector space over the field K, with dimg(V) = n, and two bases B = {v1,...,v,}, and
B ={vi,...,v,}. Then, Yw € V, we have

n n
_ Ny . — !,/ : /
w= wy =) wv, wj, w; € K,
=1 i=1

where w; and w/ are the components of w with respect to the bases B and B’, respectively.
Since the vectors v; € B are elements of V/, we can express them as linear combinations of the vectors v;
belonging to the basis B, i.e., n
/
Vj = Z A,:,'V,-.
i=1

n n n n
_ PP . ot _ /.,
W_E:WJVJ_E:WJ E:Auv, —§ N
=1 j=1 i=1 i=1

From

it follows that

n n

§ / !
1

i=1 \ j=
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Vector spaces

... Change of basis matrix

Due to the linear independence of vectors v}, we have

n
/! As. o __
W,-—E Ajiw;, i=1,...,n,
j=1

or, in matrix form
w' = Aw,

where the i-th column of matrix A is made by the components of vectors v; with respect to the basis 5’
A € K" is called change of basis matrix from the basis B to B’.
Vice versa, if we want to determine the change of basis matrix B € K"*" from the basis B’ to B, with
the same procedure, we obtain

w = Bw/,

where the j-th column of matrix B is made by the components of vectors v} with respect to the basis 5.

From the relation
w =Aw = ABW — (AB-I)w' =0 = AB =1,

B=A1
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Vector spaces

Change of basis for linear operators

Let : U — V be a linear operator, with dimg(U) = n and dimg(V) = m. Let £ = {ey,...,e,},

&' ={el,...,e,} bases for U, and F = {fy,...,f,}, F' = {f],...,f. } bases for V. For all u € U and
ve V, itis

n n m m
_ P /. _ f. g/ ) / . /
u= E uje; = E ue;, v = E vif; = E vifi, uj, u;, vj, vi € K,
j=1 i=1 j=1 i=1

where uj, u! (vj, v/) are the components of u (v) with respect to the bases £,&" (F, F’), respectively. By

means of the change of basis, we get

u = Au, v/ = By,
where A € K" " is the change of basis matrix from the basis € to £’, and B € K™*™ is the change of
basis matrix from the basis F to F’. From the representation of a linear operator, we have

v=Tu, v =T,
where T € K™*" is the associated matrix with respect to the bases £ and F, and T’ € K™*" is the
associated matrix with respect to the bases £ and F’. By using the above relations, we obtain:

T'wW=v =Bv=BTu=BTA W = T'=BTA ..
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Vector spaces

Change of basis for endomorphism

Let ®: V — V be a linear operator, with and dimg(V) = n. Let B = {vy,...,v,} and

B’ ={vi,...,v,} bases for V, T € K"" the associated matrix with respect to the same basis B,

T’ € K" " the associated matrix with respect to the same basis B’, and A € K"*" the change of basis
matrix from the basis B to B'. It is

T = ATA L,

or, equivalently,
T =P TP,

where P € K"*" is the change of basis matrix from the basis B’ to 5.
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Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Let V be a vector space over the field K, with dimg(V) = n, and ®: V — V a linear operator with
A € K"*" its associated matrix.
A scalar \ is called eigenvalue (or characteristic value) of the matrix A if there exists a non-zero vector

v € V such that
Av = \v.

The vector v € V is called eigenvector (or characteristic vector) of the matrix A corresponding to the
eigenvalue \.

A

Interpretation

An eigenvector v of a linear operator ® is a non-zero vector that, when the @ is applied to it, does not
change direction but it is scaled by a scalar factor.
The corresponding eigenvalue is the factor by which the eigenvector is scaled.

In a finite-dimensional vector space, it is equivalent to define eigenvalues and eigenvectors in terms of
matrices or linear operators!
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Eigenvalues and eigenvectors

Eigenvalues and eigenvector - Properties

@ If v € V is an eigenvector corresponding to the eigenvalue A, then also av, with a € K non-zero
scalar, is an eigenvector.

@ The set of the eigenvalues of a linear operator is called spectrum.

@ The largest absolute value of the eigenvalues of linear operator (with associated matrix A) is called
spectral radius and is denoted by p(A).

o If vi,... vk, with k =1,... n, are eigenvectors associated to distinct eigenvalues of a matrix A,
then vy, ..., v, are linearly independent.
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Eigenvalues and eigenvectors

Eigenspace

The set of all eigenvectors of a linear operator ®: V — V (with associated matrix A € K"™*")
corresponding to the same eigenvalue A, together with the zero-vector, is a subspace of V that is called
eigenspace (or characteristic space) of ® associated to the eigenvalue A, and is denoted by V), say

Vi = {v € V such that Av = \v}.

Eigensystem

The set of all eigenvectors of a linear operator ®: V — V/, each paired with its corresponding
eigenvalue, is called the eigensystem of ®.

Eigenbasis

If a set of eigenvectors of a linear operator forms a basis in V/, then this basis is called eigenbasis.
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Eigenvalues and eigenvectors

Characteristic polynomial

Let ®: V — V be a linear operator, with dimg(V) = n, and A € K" " its associated matrix.
A scalar X is an eigenvalue of the matrix A if there exists a non zero-vector v € V such that

Av = v,

that is equivalent to
(A= AD)v =0, (*)

where I is n X n identity matrix and 0 is the zero-vector.
The result (%) is a homogeneous linear system which will admit non-trivial solutions if and only if
rank(A — Al) < n, ie.,

det(A — AI) =0,

that is called characteristic equation of A. The term
p(A\) = det(A — )

is called characteristic polynomial in the unknown X associated to A, and is a polynomial of degree n.

o
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Eigenvalues and eigenvectors

Characteristic polynomial - Properties

@ Since the characteristic polynomial of a n x n matrix A is a polynomial of degree n, then it admits
at most n distinct roots, i.e., at most n distinct eigevalues, and it can be factored into the product
of n linear terms,

det(A — AI) = (A1 = A)(A2 = A) -~ (An = A),

where each \; may be real but in general is a complex number. The scalars A1, A2, ..., A,, which
may not all have distinct values, are the roots of the polynomial and are the eigenvalues of A.

o If A€ R"™" the coefficients of the characteristic polynomial will be real numbers, but the
eigenvalues may still have non-zero imaginary parts. Therefore, the components of the
corresponding eigenvectors may also have non-zero imaginary parts.

o If A€ R"™ " and n is odd, the characteristic polynomial has odd degree, and at least one the roots
is real; the remaining non-real roots are grouped into pairs of complex conjugates, namely with the
two members of each pair having imaginary parts that differ only in sign and the same real part.
Therefore, any real matrix with odd order has at least one real eigenvalue, whereas a real matrix
with even order may not have any real eigenvalues. The eigenvectors associated with these complex
eigenvalues are also complex and also appear in complex conjugate pairs.

o If the characteristic polynomial of the matrix A is full factorizable, then A is triangolable, i.e., there
exists a basis such that the associated matrix is in triangular form.
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Eigenvalues and eigenvectors

How to compute eigenvalues and eigenvectors

@ Firstly, compute the eigenvalues of the matrix A, i.e., the roots of the characteristic polynomial, say

det(A — ) = 0.
Q Collect A1,...,Am, with 1 < m < n, the recovered distinct eigenvalues.
@ For each eigenvalue \; (i =1,...,m), compute the corresponding eigenspace V), i.e., the set of all

eigenvectors associated to \;; this is done by determining a basis of the eigenspace V), i.e., by
looking for the solution set of the linear homogeneous system

(A — /\,‘H)V =0.

@ The eigenvectors corresponding to A; are the non-zero vectors of the subspace generated by the
vectors of the basis By, of the eigenspace

Vi = {v € V such that (A — Al)v = 0}.
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Eigenvalues and eigenvectors

Algebraic multiplicity

The algebraic multiplicity, denoted by p,()), of an eigenvalue \ of a matrix A € K"*" is its multiplicity
as a root of the characteristic polynomial.

Suppose the matrix A has m < n distinct eigenvalues. The characteristic polynomial can be written as
the product of m terms each corresponding to a distinct eigenvalue \; and raised to the power of the
algebraic multiplicity, i.e.,

det(A — AI) = (Mg — MG (g — X)) () — X)HalAm),
The eigenvalue's algebraic multiplicity is related to the dimension n as

1< pa(A) < n, i=1,...,m

m

If pa(A;) =1, then ); is said to be a simple eigenvalue.
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Eigenvalues and eigenvectors

Geometric multiplicity

The geometric multiplicity, denoted by fz(\), of an eigenvalue X of a matrix A € K"*" is the dimension
of the associated eigenspace V), or, equivalently, the maximum number of linearly independent
eigenvectors associated with A. Since the eigenspace

V) = {v € V such that (A — Al)v = 0}
is precisely the kernel of the matrix (A — AI), the rank-nullity theorem implies that

pe(A) = dimg(Vy) = n — rank(A — AL).

Relation between algebraic and geometric multiplicity

| A\

For the algebraic and geometric multiplicity of an eigenvalue X\ of a matrix A € K"*", the following
relation holds:

1< pg(N) < (M) < .
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Eigenvalues and eigenvectors

Additional properties of eigenvalues

Let A€ K"™" and \; (i =1,...,n) eigenvalues of the matrix A.
The following properties hold:

o det(A) = N7 \j;

o tr(A) = iAﬁ = i/\i;
i=1 i=1

e A is invertible if and only if all its eigenvalues are non-zero;

o if Ais invertible, then the eigenvalues of A~! are x and each eigenvalue's geometric multiplicity

1
coincides. Moreover, since the characteristic polynomial of the inverse matrix is the reciprocal
polynomial of the original, the eigenvalues share the same algebraic multiplicity; also, the
eigenvectors of A are the same as the eigenvectors of A~ !;

e if A is unitary, every eigenvalue has absolute value |A;| = 1.
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Eigenvalues and eigenvectors

Similar matrices

Two matrices A, B € K"*" are called similar if there exists an invertible matrix P € K"*" such that

B=P AP

Similar matrices: properties

| A\

@ Similar matrices represent the same linear transformation under two (possibly) different bases, with
P being the change of basis matrix.

@ A transformation B — P~LAP is called similarity transformation.

@ Two similar matrices have the same rank, determinant, trace and characteristic polynomial.

A
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Diagonalizable matrix

Eigenvalues and eigenvectors

Let V be a vector space over the field K, with dimg(V) = n, and ®: V — V a linear operator with

A € K"*" its associated matrix.

The matrix A € K"*" is diagonalizable if it is similar to a diagonal matrix A € K"*", j.e., there exists an
invertible matrix P € K"*" such that

A= P LAP, or, equivalently, A= PAP !,

where
@ the i-th column of P is the i-th eigenvector of A;
@ the diagonal elements of A are the corresponding eigenvalues, i.e., Aj = \j;
@ the eigenvectors of A form a basis for V.

The number of linearly independent eigenvectors with non-zero eigenvalues is equal to the rank of the
matrix A.

\

In an equivalent way, the linear operator ®: V — V is diagonalizable if there exists a basis of V made of
the eigenvectors of the associated matrix Al

v
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Eigenvalues and eigenvectors

Eigendecomposition

If A€ K"™" can be decomposed into a matrix P € K"*" composed of its linearly independent
eigenvectors, a diagonal matrix A € K"*" with its eigenvalues along the diagonal, and the inverse of the

matrix P of eigenvectors, say
A= PAP,

this procedure is called eigendecomposition and it is a similarity transformation.
The matrix P is the change of basis matrix of the similarity transformation. Essentially, the matrices A
and A represent the same linear transformation expressed in two different bases.

Let V be a vector space over the field K, with dimg(V) = n, and ®: V — V a linear operator with
A € K™ its associated matrix.
The matrix A € K™ " is diagonalizable if and only if:

Q@ \cK Vi=1,....nm
Q > ma(Ni)=n
Q 1a(Ni) = pg(Ni) Vi=1,...,n.
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Eigenvalues and eigenvectors

o If A€ K"™" is symmetric = A is diagonalizable.
o If A€ K™" has n distinct eigenvalues \; € K = A is diagonalizable.

o If A€ K"™" can be eigendecomposed and if none of its eigenvalues are zero = A is invertible and

its inverse is given by
Al = pPATiPTL

Furthermore, since A is a diagonal matrix, its inverse is easy to compute /\,-71 = )\i
o If A€ R"™" is symmetric = all eigenvalues of A are real.
o If A€ R"™" is symmetric = eigenvectors corresponding to distinct eigenvalues are orthogonal.

o If A€ R"™ " is symmetric = the eigenvalues are real and the eigenvectors can be chosen real and
orthonormal. Thus a real symmetric matrix A can be decomposed as

A= QAQT (equivalently, A= QTAQ),
where @ is an orthogonal matrix (Q‘1 = QT) whose columns are the real orthonormal eigenvectors
of A.

o If A€ R"™" is a symmetric matrix positive definite, positive semi-definite, negative definite, or
negative semi-definite = each eigenvalue is positive, non negative, negative, or non positive.
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Quadratic forms

Quadratic form

Let V be a vector space over K, with dimg(V) = n, and B = {vy,...,v,} a basis for V.

An n—ary quadratic form over a field K is a homogeneous polynomial g(xi, ..., x,) of degree 2 in n
variables with coefficients in K:

n n
q(x) = q(le ©oo ,Xn) = Z Z ajjXiXj,

i=1 j=1

where x = (x1,...,%,) € V, x; are the components of x with respect to the basis 55, and a; € K are
called coefficients of the quadratic form.

Equivalently, in matrix form
q(x) = x" Ax,

where A € K"*" is the symmetric matrix associated to g(x).
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Quadratic forms

Associated symmetric matrix

Any symmetric matrix A € K"*" determines a unique quadratic form g(x,...,X,) in n variables by
n n
q(x1,. .., xn) = Z Z ajjXixj = x| Ax.
i=1 j=1
Vice versa, a quadratic form g(xi, ..., X,) in n variables, defined by A € K"*", determines a unique
matrix B € K"™*", say
that is symmetric, defines the quadratic form g(x, ..., x,) as the matrix A and is the unique symmetric

matrix that defines q(x1, ..., x,).

\

Over the real numbers, there is a one-to-one correspondence between quadratic forms and symmetric
matrices that determine them.

A,
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Quadratic forms

411 d12 a3

ax1 ax axs | . The quadratic form g(x) = x” Ax in the variables
da31 d32 as3

x = (x1, X2, x3) associated to the matrix A is

Consider the matrix A =

411 d12 413 X1
q(X)Z(Xl X2 X3) a1 ap a3 X2 | =
d31 d32 as3 X3

2 2
= a11xi + (@12 + ax1)xix2 + (213 + as1)xix3 + axnxs + (a2 + an)xex3 + aszx;.

So, two matrices define the same quadratic form if and only if they have the same elements on the

diagonal and the same values for the sums aj» + ap1, a13 + as1 and aps + asp. In particular, the quadratic
form g(x) is defined by a unique symmetric matrix

i +ax 413+ a3

a1l
2 2
aip + an1 a3 + as
A=| —— axn —
2 2
13 +a31 a3+ axn R
33
2 2

Matteo Gorgone
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Quadratic forms

Equivalent quadratic forms

Let V be a vector space over K, with dimg (V) = n, g(x) = x” Ax and p(x) = x Bx be n-ary quadratic
forms over the field K with associated symmetric matrices A, B € K"*", respectively.
The quadratic forms p(x) and g(x) are called equivalent if there exists an invertible matrix C € K"*"
such that

p(x) = 4(Cx).

It follows that
x"Bx = p(x) = q(Cx) = (Cx)TA(Cx) = x" CTACx,

i.e., the symmetric matrices A of g(x) and B of p(x) are related as

B=CTAC.
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Quadratic forms

Real quadratic forms

Let V be a real vector space, with dimg(V) = n, and g(x) be an n—ary quadratic form over the field R.
In this case, g(x) is called real quadratic form.

Equivalence of real quadratic forms

Every n-ary real quadratic form g(x) = x” Ax, with associated symmetric matrix A € R"<" is equivalent

to a diagonal form
p(x) = A\ixZ 4+ Aox3 4 - + Apx2 = xT Ax,

where A is a diagonal matrix whose entries are the real eigenvalues A; of A.
In fact, since A is a real symmetric matrix, A can be eigendecomposed and we have

A= QTAQ
where @ is an orthogonal matrix whose columns are the orthonormal eigenvectors of A. It is
p(x) =x"Ax=x"QTAQx = (@x) T A(Qx) = g(Qx).

The quadratic form p(x) is represented in diagonal form with respect to the orthonormal basis 5’ of
eigenvectors of A.
Classification of all real quadratic forms up to equivalence can be reduced to the case of diagonal forms!
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Quadratic forms

Definiteness of quadratic forms

Let V be a real vector space, with dimg(V) = n, and q(x) = x” Ax be an n-ary real quadratic form with
associated symmetric matrix A € R"*".

A definite quadratic form is a real quadratic form over the vector space V that has the same sign for
every non-zero vector of V.

In general, a real quadratic form g(x) = xT Ax (or, equivalently, the associated symmetrix matrix

A e R™"M is:

positive definite if xTAx >0 Vx € V, x £ 0;
positive semi-definite if x7TAx >0 Vx € V;
negative definite if x’Ax <0 Vx €V, x#0;
negative semi-definite if x’Ax <0 Vx € V;
indefinite if Ix,y € V : xTAx >0, yT Ay < 0.
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Quadratic forms

Leading principal minor

The k-th leading principal minor of a matrix A € K"*" is the determinant of the k x k sub-matrix
obtained from A by deleting the last n — k rows and the last n — k columns.

Principal minor

The k-th principal minor of a matrix A € K"*" is the determinant of the k x k sub-matrix obtained from
A by deleting n — k rows and columns with the same indices.

For an n x n square matrix there are n leading principal minors.

If M is a leading principal minor of a matrix A € K"*" = M is a principal minor of a matrix A € K"*",
The converse is not in general true!

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra



Quadratic forms

Example: leading principal minors

The matrix
a1
A= ani
as1

has 1-th, 2-th and 3-th leading principal minors

ai
My = det (a11) = a11, M, = det
1 ( 11) 11 2 <a21

respectively.

ai2
azo
as2

a12
da

a13
a3
as3

411 d12 413
) ) Ms =det [ a1 ax» a3
431 d32 4as3

Matteo Gorgone

Mathematics for Data Analysis: Linear Algebra




Quadratic forms

Example: principal minors

The matrix
d11 d12 413
A= |ax axn ax
d31 d32 as3
has the principal minors
1-th — M; = det (311) = a1, My = det (322) = any, M3 = det (833) = az3,
a a a a a
2-th — My =det | Tt 912 Ms =det [ ) My = det ( °%?
a1 ax 431  4a33 as2
411 d12 a3
3-th — M; =det | a1 ax a3
431 d32 das3

az
ass

).
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Quadratic forms

Definiteness of quadratic forms - Sylvester's criterion

Let V be a vector space over R, with dimg(V) = n, and g(x) = x” Ax be an n-ary real quadratic form
with associated symmetric matrix A € R"*". The definiteness of the quadratic form (equivalently, the
sign of the matrix A) is characterized by the sign of leading principal minors and the principal minors of
A. Then:

A is positive definite if and only if its all leading principal minors are positive;

A is positive semi—definite if and only if its all principal minors are non—negative;

A is negative definite if and only if its all leading principal minors of odd order are negative, and all
leading principal minors of even order are positive;

@ A is negative semi—definite if and only if its all principal minors of odd order are non-positive, and
all principal minors of even order are non-negative;

A is indefinite in all the remaining cases.
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Quadratic forms

Gauss elimination for definiteness of quadratic forms

Let V be a vector space over R, with dimg(V) = n, and g(x) = x” Ax be an n-ary real quadratic form
with associated symmetric matrix A € R"*".

By means of Gauss elimination, the associated symmetric matrix A can be reduced to an upper triangular
form, by preserving the sign of its determinant during the pivoting process. The product of the elements
of the diagonal (the pivots) is the determinant and, since the k-th leading principal minor of a triangular
matrix is the product of its diagonal elements up to row k, Sylvester's criterion for definetess of quadratic
forms (or sign of the matrix) is equivalent to checking the sign of the diagonal elements. This condition
can be checked each time a new row k of the triangular matrix is obtained during the Gauss elimination.
Then:

@ A is positive definite if and only if all pivots are positive;

@ A is positive semi—definite if and only if all pivots are non—negative;

A is negative definite if and only if all pivots are negative;

o
@ A is negative semi—definite if and only if all pivots are non—positive;
o

A is indefinite if and only if there are positive and negative pivots.
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Quadratic forms

Definiteness of quadratic forms - Characterization in terms of eigenvalues

Let V be a vector space over R, with dimg(V) = n, and g(x) = x” Ax be an n-ary real quadratic form
with associated symmetric matrix A € R"*".
Since A is a real symmetric matrix, all eigenvalues of A are real, and their sign characterize the
definiteness of the quadratic form (equivalently, the sign of the matrix A).
Then:
@ A is positive definite if and only if its all eigenvalues are positive;
A is positive semi—definite if and only if its all eigenvalues are non—negative;

A is negative definite if and only if its all eigenvalues are negative;

°
°
@ A is negative semi—definite if and only if its all eigenvalues are non—positive;
°

A is indefinite if and only if it admits both positive and negative eigenvalues.
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Quadratic forms

Descartes’ rule of signs

The sign of eigenvalues can be checked using Descartes’ rule of alternating signs when the characteristic
polynomial of a real symmetric matrix M € R"*" is available. In such a case, all eigenvalues will be real.
As well known, the characteristic polynomial of M is a polynomial of degree n that, ordered by
descending variable exponent, can be written as

p(A) = ap\" + an A"+ A + ap, ai e R.

Descartes’ rule:
@ if ag # 0, there are non-zero roots, and the number of positive roots (a root of multiplicity k is
counted as k roots) of the polynomial is equal to the number of sign changes between consecutive
(non-zero) coefficients; for negative roots, we have

number of negative roots = n — (number of positive roots);

e if ag = 0, collect the polynomial by a common factor; then, there are zero roots counted with their
multiplicity, the number of positive roots can be computed for the obtained polynomial after
collection as in the previous case; for negative roots, we have

number of negative roots = n — (number of zero roots) — (number of positive roots).
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Quadratic forms

Consider the quadratic form g(xi, X2, X3, Xa, x5) associated to the real symmetric matrix

4.85559 4.15077 2.86879 2.71129 2.42802
4.15077 4.96922, 3.58577 3.05249 3.04842
A=286879 358577 4.48631 3.41923 3.8877
2.71129 3.05249 3.41923 4.72888 3.45937
2.42802 3.04842 3.8877 3.45937 3.93873

The characteristic polynomial of A is

p(\) = —A® 4 22.9787\* — 101.928)\° 4 149.154)\% — 77.3386\ + 11.691.
Since in p(\) there are 5 sign changes, the matrix A admits 5 positive eigenvalues = A, and so the
quadratic form q(x1, %2, X3, X4, Xs), is positive definite.

In fact, the eigenvalues of A are

A = 0.258844, )\, =0.612167, A3 = 135774,  \q =3.07432,  \s = 17.6756.
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Quadratic forms

Consider the quadratic form g(xi, X2, X3, Xa, x5) associated to the real symmetric matrix

3.67822 4.32808 3.69609 3.1335 3.21014
4.32808 2.10251 3.48111 3.57061 3.5567
A= 1369609 3.48111 1.53572 3.49061 3.13288
3.1335 3.57061 3.49061 3.27227 2.8812
3.21014 3.5567 3.13288 2.8812 3.31134

The characteristic polynomial of A is
p(\) = —A® 4 13.9001\* + 44.72)% 4 10.3076)\% — 30.6237\ + 7.1184.

Since in p(\) there are 3 sign changes, the matrix A admits 3 positive eigenvalues and 2 negative
eigenvalues = A, and so the quadratic form g(x1, x2, X3, X4, X5), is indefinite.
In fact, the eigenvalues of A are

A1 = 0.317928, A2 = 0.444959, Az = —1.65589, Aq = —1.82825, As = 16.6213.
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Quadratic forms

e Let M € R"™*" be symmetric. M is positive definite < M can be decomposed as M = AT A, with
A € R"™" invertible.

o Let M € R"*" be symmetric. M is positive definite < M can be decomposed in a unique way as
M = LLT (Cholesky decomposition), where L € R"*" is a lower triangular matrix with positive
diagonal entries. If M is only positive semi—definite, then the Cholesky decomposition of the form
M = LLT still holds where the diagonal entries of L are allowed to be zero, and this decomposition
needs not be unique.

M € R™" is negative (semi) definite <& —M is positive (semi) definite.

Every positive definite matrix M € R"*" is invertible and its inverse M1 is also positive definite.
If M € R"™" is positive definite = rank(M) = n.

If M € R"™ " is positive definite and r > 0 is a real number = rM is positive definite.

If M, N € R"*" are positive (semi) definite = M + N is positive (semi) definite.

If M, N € R" " are positive definite and MN = NM = MN is positive definite.

If M, N € R"™ " are positive definite = MNM and NMN are positive definite.

If M € R™" is positive semi—definite = AT MA is positive semi—definite for any (possibly
rectangular) matrix A. If M is positive definite and A has full rank, then AT MA is positive definite.
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