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Why Linear Algebra?

Linear algebra is a central field of mathematics that is universally agreed to be a prerequisite to a deeper
understanding of data analysis.
Linear algebra is the mathematics of data (vectors and matrices are the language of data).
Linear algebra is the study of lines and planes, vector spaces and mappings that are required for linear
transformations.

Applications of Linear Algebra

Matrices in Engineering, such as a line of springs.

Graphs and Networks, such as analyzing networks.

Markov Matrices, Population, and Economics, such as population growth.

Linear Programming, the simplex optimization method.

Fourier Series: Linear Algebra for functions, used widely in signal processing.

Computer Graphics, such as the various translation, rescaling and rotation of images.

Linear Algebra for statistics and probability, such as least squares for regression.
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Linear Algebra and Statistics

Some clear fingerprints of linear algebra on statistics and statistical methods include:

use of vector and matrix notation, especially with multivariate statistics;

solutions to least squares and weighted least squares, such as for linear regression;

estimates of mean and variance of data matrices;

the covariance matrix that plays a key role in multinomial Gaussian distributions;

Principal Component Analysis for data reduction that draws many of these elements together.
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Linear Algebra and Data Analysis

Linear algebra is used in data preprocessing, data transformation, and model evaluation.
Then, we need to be familiar with:

Vector spaces and subspaces;

Euclidean spaces;

Linear operators;

Vector and matrix operations;

Linear systems;

Distances and Metrics;

Eigenvalues and Eigenvectors;

Quadratic forms.
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Basic definitions

Group (additive notation)

A group G is a non–empty set of elements endowed with a binary law of composition

+: G × G → G

(x , y) 7→ x + y

satisfying the following axioms:

1 the associative property holds:

∀x , y , z ∈ G (x + y) + z = x + (y + z);

2 there exists the identity element:

∃0 ∈ G such that ∀x ∈ G 0 + x = x + 0 = x ;

3 every element has an opposite:

∀x ∈ G ∃ − x ∈ G such that x + (−x) = −x + x = 0.

In this case, (G ,+) is called additive group.
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Basic definitions

Group (multiplicative notation)

A group G is a non–empty set of elements endowed with a binary law of composition

· : G × G → G

(x , y) 7→ x · y

satisfying the following axioms:

1 the associative property holds:

∀x , y , z ∈ G (x · y) · z = x · (y · z);

2 there exists the identity element:

∃1 ∈ G such that ∀x ∈ G 1 · x = x · 1 = x ;

3 every element has an inverse:

∀x ∈ G ∃x−1 ∈ G such that x · x−1 = x−1 · x = 1.

In this case, (G , ·) is called multiplicative group.
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Basic definitions

Remark

The identity element 0 (1) and the opposite element −x (x−1) of every element x ∈ G are unique.

Commutative group (additive notation)

An additive group (G ,+) is Abelian if

x + y = y + x ∀x , y ∈ G .

Commutative group (multiplicative notation)

A multiplicative group (G , ·) is Abelian if

x · y = y · x ∀x , y ∈ G .
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Basic definitions

Exercises

Establish if the following sets with the corresponding operations are groups:

1 (N,+), (N, ·);
2 (Z,+), (Z, ·);
3 (Q,+), (Q, ·);
4 (R,+), (R, ·);
5 (Z− {0}, ·), (Q− {0}, ·), (R− {0}, ·).
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Basic definitions

Subgroup (additive notation)

A subgroup H is a non–empty subset of a group (G ,+) which is itself a group with the operation
inherited from that of G .
Equivalently, a subgroup H of G is a subset of G , denoted by H ≤ G , such that

1 0G ∈ H;

2 −x ∈ H ∀x ∈ H;

3 H is closed with respect to the law of composition of G , i.e.,

∀x , y ∈ H x + y ∈ H.
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Basic definitions

Subgroup (multiplicative notation)

A subgroup H is a non–empty subset of a group (G , ·) which is itself a group with the operation
inherited from that of G .
Equivalently, a subgroup H of G is a subset of G , denoted by H ≤ G , such that

1 1G ∈ H;

2 x−1 ∈ H ∀x ∈ H;

3 H is closed with respect to the law of composition of G , i.e.,

∀x , y ∈ H x · y ∈ H.

Subgroup: properties

Each group G contains at least two subgroups:

1 the group G itself;

2 the trivial subgroup {0G} ({1G}) formed only by the identity element of G.

Proper subgroup

A subgroup H of a group G is called proper if H is a proper subset of G , i.e., H ⊂ G .
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Basic definitions

Example

The set of even numbers form a proper subgroup of (Z,+). In fact, the sum of two even numbers is
even, 0 (the identity element) is even, and the opposite element of an even number is even too.

Example

The integers divisible by a fixed natural number n ∈ N (that is, the integers expressible as the product
between n and a suitable integer) form a subgroup of (Z,+), denoted by nZ = {nz : n ∈ N, z ∈ Z}.
Therefore nZ ≤ Z for each n ∈ N (note that 0Z = {0}).

Example

Let H = {−1, 0, 1, 2, 3, 4, 5, 6}.
(H,+) is not a subgroup of Z! Also, it is neither a subgroup of Q nor a subgroup of R.
The same holds for (H, ·)!
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Basic definitions

Group operations

Let H and K be subgroups of a group G . Then:

H ∩ K is a subgroup of G ;

H ∪K is not, in general, a subgroup of G . H ∪K is a subgroup of G if and only if H ⊆ K or K ⊆ H.

Example

Consider the additive group (Z,+) and the two subgroups

A = 2Z, B = 3Z.

We have that A ∪ B is not a subgroup of Z. In fact:

2 ∈ 2Z ⊆ 2Z ∪ 3Z and 3 ∈ 3Z ⊆ 2Z ∪ 3Z;

but
2 + 3 = 5 /∈ 2Z ∪ 3Z,

because
5 /∈ 2Z and 5 /∈ 3Z.
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Basic definitions

Field

A field K is a non–empty set on which two binary laws of composition

+: K×K → K and · : K×K → K,

called respectively addition and multiplication, are defined such that

1 K is an abelian group with respect to the addition, i.e.,

∀x , y , z ∈ K (x + y) + z = x + (y + z);
∃0 ∈ K such that ∀x ∈ K 0 + x = x + 0 = x ;
∀x ∈ K ∃ − x ∈ K such that x + (−x) = −x + x = 0;
∀x , y ∈ K x + y = y + x ;

2 K− {0} is an abelian group with respect to the multiplication, i.e.,

∀x , y , z ∈ K (x · y) · z = x · (y · z);
∃1 ∈ K such that ∀x ∈ K 1 · x = x · 1 = x ;
∀x ∈ K ∃x−1 ∈ K such that x · x−1 = x−1 · x = 1;
x · y = y · x ∀x , y ∈ K;

3 addition and multiplication are connected by the distributive law

(x + y) · z = (x · z) + (y · z) ∀x , y , z ∈ K.
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Basic definitions

Subfield

A subset H of a field K which is closed under addition and multiplication, and containing the opposite
and the inverse of all its elements is a field too, and it is called a subfield of K.

Examples

(Z,+, ·) is not a field;

(Q,+, ·) is a field;

(R,+, ·) is a field;

(Q,+, ·) is a subfield of (R,+, ·).

Fields and Vector Spaces

Fields are fundamental in the definition of vector spaces; most of the properties of the latter (existence of
a basis, dimension, subspaces) do not depend on the particular field employed. Moreover, the possibility
of defining a scalar product (and therefore a structure of Euclidean space) depends on the chosen field.
Diagonalization of linear operators is related to the field of the vector space, as it is linked to the
presence of roots of the characteristic polynomial.
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Vector spaces

Vector space

A vector space V over the field K is a non–empty set of elements v1, v2, . . . called vectors, with the
following algebraic structure:

1 there is a mapping
+: V × V → V

(u, v) 7→ u+ v

such that (V ,+) is an additive abelian group;

2 there is a mapping
· : K× V → V

(λ, v) 7→ λv

which satisfies the axioms:

∀λ, µ ∈ K, ∀v ∈ V (λµ)v = λ(µv);
∀λ, µ ∈ K, ∀v ∈ V (λ+ µ)v = λv + µv;
∀λ ∈ K, ∀u, v ∈ V λ(u+ v) = λu+ λv;
∃1 ∈ K : ∀v ∈ V 1v = v1 = v.
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Real vector spaces

A non–empty set V is a vector space over the field R if two binary laws of composition

+: V × V → V , · : R× V → V ,

(u, v) 7→ u+ v, (λ, v) 7→ λv

called respectively addition and field multiplication, are defined such that
1 ∀u, v,w ∈ V (u+ v) +w = u+ (v +w);

2 ∃0 ∈ V such that ∀u ∈ V 0+ u = u+ 0 = u;

3 ∀u ∈ V ∃ − u ∈ u such that u+ (−u) = −u+ u = 0;

4 ∀u, v ∈ V u+ v = v + u;

5 ∀λ, µ ∈ R, ∀u ∈ V (λµ)u = λ(µu);

6 ∀λ, µ ∈ R, ∀u ∈ V (λ+ µ)u = λu+ µu;

7 ∀λ ∈ R, ∀u, v ∈ V λ(u+ v) = λu+ λv;

8 ∃1 ∈ R : ∀u ∈ V 1u = u1 = u.
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Vector spaces

Example

The set Rn of the n–tuples
u = (u1, . . . , un), ui ∈ R

is a real vector space with the vector addition +: Rn × Rn → Rn and field multiplication
· : R× Rn → Rn defined as:

u+ v = (u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn),

λ · u = λ · (u1, . . . , un) = (λu1, . . . , λun).

In this case, the identity element with respect to the addition is the n-tuple

(0, . . . , 0)

and the opposite is the n-tuple
(−u1, . . . ,−un).
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Vector spaces

Example

Let C be the set of all continuous real-valued functions f in the interval I ⊆ R,

f : I → R.

If f and g are two continuous functions, also the function f + g defined by

(f + g)(t) = f (t) + g(t)

is continous. Moreover, for any real number λ, the function λf defined by

(λf )(t) = λf (t)

is also continuous. Then, C with the above operations is a real vector space.
In this case, the identity element with respect to the addition is the function 0 defined by

0(t) = 0,

and the opposite −f is the function given by

(−f )(t) = −f (t).

Remark

Instead of the continuous functions, we could equally consider the set of k-times differentiable functions,
or the set of analytic functions.
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Vector spaces

Example

Let S be an arbitrary set and V a vector space. Consider all mappings f : S → V and the define the sum
of two mappings f and g as

(f + g)(s) = f (s) + g(s) s ∈ S

and the field multiplication as
(λf )(s) = λf (s) s ∈ S .

Then, the set of all mappings f : S → V is a vector space. The identity element is the function f defined
by

f (s) = 0, s ∈ S .
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Vector spaces

Example

The set of polynomials of degree at most n with real coefficients given by

Rn[x ] = {a0 + a1x + . . .+ an−1x
n−1 + anx

n : ai ∈ R ∀i ∈ {0, 1, . . . , n}}

is a real vector space with the operations

p(x) + q(x) = (a0 + a1x + . . .+ an−1x
n−1 + anx

n) + (b0 + b1x + . . .+ bn−1x
n−1 + bnx

n) =

= (a0 + b0) + (a1 + b1)x + . . .+ (an−1 + bn−1)x
n−1 + (an + bn)x

n,

λ · p(x) = λ · (a0 + a1x + . . .+ an−1x
n−1 + anx

n) =

= λa0 + λa1x + . . .+ λan−1x
n−1 + λanx

n.

Exercise

Prove that R3 is a real vector space with the operations +: R3 × R3 → R3 and · : R× R3 → R3 defined
as:

u+ v = (u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3),

λ · u = λ · (u1, u2, u3) = (λu1, λu2, λu3).
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Exercise

Establish if R3 with the operations +: R3 × R3 → R3 and · : R× R3 → R3 defined as:

u+ v = (u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3),

λ · u = λ · (u1, u2, u3) = (λu1, λu2, 0)

is a vector space.

Exercise

Establish if R2 with the operations +: R2 × R2 → R2 and · : R× R2 → R2 defined as:

u+ v = (u1, u2) + (v1, v2) = (u1v2, u2v1),

λ · u = λ · (u1, u2) = (uλ1 , u
λ
2 )

is a vector space.
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Vector spaces

Linear combination

Let V be a vector space over the field K, and {v1, . . . , vn} a family of vectors in V . Then, a vector
v ∈ V is called a linear combination of the vectors vi ∈ V (i = 1, . . . , n) if there exist some scalars
λi ∈ K such that

v =
n∑

i=1

λivi .

If λi = 0 ∀i = 1, . . . , n, then v is a trivial linear combination.
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Vector spaces

Exercises

1) Consider the following vectors in R3:

w1 = (0, 0, 1), w2 = (12, 11,−1), w3 = (1,−2, 1)

and the scalars λ1 = 2, λ2 = 1, λ3 = 3. Write some possibile linear combinations.

2) In R2[x ] consider the polynomials

p(x) = 3x2 + 2, q(x) = x − 2

with scalars λ1 = 2, λ2 = −1. Write some possible linear combinations.

3) Consider the following vectors in R3:

v1 = (1, 2, 0), v2 = (3,−4, 2)

with the scalars λ1 = 2, λ2 = −1. Write all possible linear combinations.
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Vector spaces

Exercises

4) Write the vector w = (1, 0, 2) as linear combination of

v1 = (0, 2, 0), v2 = (1, 1, 0), v3 = (0, 1, 1)

(Solution: λ1 = −3/2, λ2 = 1, λ3 = 2)

5) Compute the scalars λi (i = 1, 2, 3) such that the polynomial

q(x) = 3x2 + 4x + 2,

is linear combination of the polynomials

p1(x) = 3x2 + 2x + 1, p2(x) = −2x2 + 3, p3(x) = 4x2 + 3x .

(Solution: λ1 = −1, λ2 = 1, λ3 = 2)

6) Establish if the vector w = (0, 0, 1) is linear combination of the vectors v1 = (1, 1, 0) and
v2 = (1, 2, 0).
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Vector spaces

Linear independence

A family {v1, . . . , vn} of vectors is called linearly independent if

n∑
i=1

λivi = 0, λi ∈ K, vi ∈ V =⇒ λi = 0 ∀i = 1, . . . , n.

The vectors {v1, . . . , vn} are called linearly dependent in the opposite case, i.e., if there exist some
scalars λi such that

n∑
i=1

λivi = 0, λi ∈ K, vi ∈ V ,

with at least one scalar λi ̸= 0.
Then, at least one of the vectors vi can be expressed as linear combination of the remaining ones.

Examples

A vector v ∈ V , with v ̸= 0, is linearly independent. In fact, the equation λv = 0, with λ ∈ K,
implies that λ = 0.

Two vectors x, y ∈ V are linearly dependent if and only if y = λx (or x = λy) for some λ ∈ K.
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Examples

In R3, the vectors
v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)

are linearly independent.

In R3, the vectors
v1 = (1, 1, 0), v2 = (0, 0, 2), v3 = (0, 0,−3)

are linearly dependent.

In R3, the vectors
v1 = (1,−1, 1), v2 = (3, 1, 2), v3 = (1, 3, 0)

are linearly dependent.

Consider the vector space R2[x ] of polynomials of degree at most 2 with real coefficients.
The polynomials

p(x) = x2 + 1, q(x) = x + 3

are linearly independent.
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Vector spaces

Remark

A family consisting of only one vector v ∈ V is linearly dependent if and only if v = 0. Thus, every
family containing the zero vector is linearly dependent.

Proposition

Every non zero vector in a vector space V is linearly independent.

Proposition

If someone of the vectors v1, . . . , vn of a vector space V is a zero vector, then the vectors v1, . . . , vn are
linearly dependent.

Proposition

Let v1, . . . , vn be vectors in a vector space V over a field K. If k vectors of them, v1, . . . , vk , with k < n,
are linearly dependent, then all n vectors v1, . . . , vn are linearly dependent.
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Vector spaces

Proposition

Every subfamily of a linearly independent family of vectors is linearly independent.

Proposition

A family {v1, . . . , vn} of vectors is linearly independent if and only if every vector w ∈ V can be written
at most in one way as a linear combination of the vectors vi , i.e., if and only if for each linear
combination

w =
n∑

i=1

λivi , λi ∈ K, vi ∈ V

the scalars λi (i = 1, . . . , n) are uniquely determined by w.
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Vector spaces

System of generators

Let V be a vector space over the field K. A subset S = {v1, . . . , vs} ⊆ V is called a system of
generators for V if every vector w ∈ V is a linear combination of the vectors vi of S, i.e.,

w =
s∑

i=1

λivi , λi ∈ K.

Remark

The whole space V is clearly a system of generators.

If S ⊆ V is a system of generators for V and T ⊆ S is a system of generators for S , it follows that
T is also a system of generators for V .

For every vector space V ̸= {0} there exist an infinite number of system of generators.

How to check if a set of vectors {v1, . . . , vn} is a system of generators?

Given an arbitrary w ∈ V , we have to check if there exist n scalars λi ∈ K such that

λ1v1 + λ2v2 + . . .+ λnvn = w,

i.e., we have to check if this linear system in the unknowns λ1, . . . , λn admits solution.
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Example

Consider the set A = {(0, 2), (1, 0), (1, 1)} ⊆ R2. It is a system of generators of R2.
For every vector w = (w1,w2) ∈ R2 we can determine λi ∈ R (i = 1, 2, 3) such that

(w1,w2) = λ1(0, 2) + λ2(1, 0) + λ3(1, 1).

For example, with w = (w1,w2) = (27, 4) we can choice

λ1 = 2, λ2 = 27, λ3 = 0.

Note that this choice is not unique!
In fact, by considering

λ1 = 1, λ2 = 25, λ3 = 2,

we can have a linear combination that generates the vector w = (27, 4).
If we want to check that A is a system of generators, we have to check if the linear system

λ2 + λ3 = w1,

2λ1 + λ3 = w2

admits solution for all w ∈ V .
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Vector spaces

Example

Consider the vector space of polynomials of degree at most 2 with real coefficients

R2[x ] = {a+ bx + cx2, with a, b, c ∈ R}.

A system of generator can be the set
{1, x , x2} ⊆ R2[x ],

and an arbitrary polynomial p(x) can be written as

p(x) = a+ bx + cx2.

Another system of generators can be the set

{1, x , x2, x + 3x2}.

In fact, an arbitrary polynomial p(x) can be written as

p(x) = a+ bx + cx2 + 0(x + 3x2).
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Vector spaces

Exercises

1 Establish if the family of vectors
{(1, 2, 0), (2, 5,−2)}

is a system of generators of R3.

2 Establish if the family of vectors

{(1,−1, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0), (1,−1, 1, 2)}

is a system of generators of R4.
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Vector spaces

Basis

Let V be a vector space over the field K. A family B = {v1, . . . , vn} of vectors is called a basis of V if it
is a system of generators and vi are linearly independent, i.e., if and only if every vector w ∈ V can be
written at most in one way as

w =
n∑

i=1

λivi , λi ∈ K, vi ∈ V .

The scalars λi are called components of w with respect to the basis {v1, . . . , vn}.

Remark

A basis is a system of generators. The converse is not in general true! A system of generators is a basis
if and only if the vectors are linearly independent.
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Vector spaces

Exercise

Let V = {(a, b, 0) : a, b ∈ R} be a vector space over R. Verify that the set of vectors

{(1, 1, 0), (1, 2, 0)} ⊂ V

is a basis for V .

Proposition

Let S = {v1, . . . , vn} be a finite system of generators for V , and assume that the vectors v1, . . . , vr
(r ≤ n) are linearly independent. Then, there exists a basis of V which contains the vectors v1, . . . , vr
and is contained in S .
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Vector spaces

Properties

Every vector space V ̸= {0} admits at least one basis.

Every vector space V ̸= {0} admits infinite bases.

All bases of a vector space V have the same cardinality (i.e., the number of vectors).

Dimension

The dimension of a vector space V over the field K, denoted by dimK(V ), is the cardinality of a basis of
V . The dimension of a vector space is uniquely defined!
Then, a vector space V , over a field K, is finite-dimensional if dimK(V ) < ∞, otherwise is
infinite-dimensional.

A more efficient method to check system of generators

Based on the concept of dimension of a vector space, we can consider a new method to check if a set of
vectors is a system of generators.
Let V be a vector space over a field K, with dimK(V ) = n and S = {v1, . . . , vk} ⊆ V . Then, S is a
system of generators for V if and only if:

dimK(V ) = n ≤ |S | = k ;

S = {v1, . . . , vk} contains n linearly independent vectors.
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Vector spaces

Example

The vector space V = {0} has dimension equal to zero, i.e.,

dimK({0}) = 0.

Example

Rn is a finite–dimensional vector space over R, i.e., dimR(Rn) = n.
The standard canonical basis is given by the vectors

e1 = (1, 0, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

...

en = (0, 0, . . . , 0, 1).

In fact, every vector v = (v1, v2, . . . , vn) ∈ Rn can be written as

(v1, v2, . . . , vn) = v1(1, 0, 0, . . . , 0) + v2(0, 1, 0, . . . , 0) + . . .+ vn(0, 0, 0, . . . , 1) =

= v1e1 + v2e2 + . . .+ vnen.
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Vector spaces

Example

The set of continuous functions f : R −→ [a, b] is a infinite–dimensional vector space.
In fact, if we consider the monomials x , x2, . . . , xn, the condition

λ1x + λ2x
2 + · · ·λnx

n = 0

is satisfied only when λi = 0 (i = 1, . . . , n) ∀n.

Example

The vector space of polynomials of degree at most n with real coefficients

Rn[x ] = {a0 + a1x + . . .+ an−1x
n−1 + anx

n : ai ∈ R ∀i ∈ {0, 1, . . . , n}}

is finite–dimensional over R, i.e., dimR(Rn[x ]) = n + 1.
The standard canonical basis is given by the set of n + 1 vectors (polynomials):

{1, x , x2, . . . , xn}.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 37/201



Vector spaces

Exercises

1 Find the coordinates of the vector w = (1,−1, 3, 5) ∈ R4 with respect to the standard canonical
basis B of R4.

2 Find the coordinates of the vector w = (3, 4) ∈ R2 with respect to the basis B of R2, where

B = {(2, 1), (1, 2)}.

3 Verify if the set of vectors
{(1, 1), (2, 3)} ⊂ R2

is a basis of R2.

4 Verify if the set of vectors
{(1, 1), (2, 3), (0, 1)} ⊂ R2

is a basis of R2.

5 Verify if the set of vectors
{(1, 0, 1), (1, 2, 0), (2, 2, 1)} ⊂ R3

is a basis of R3.
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Vector spaces

Subspace

Let V be a vector space over the field K. A non–empty subset U ⊆ V is called a subspace of V if U
inherits the structure of a vector space from V (i.e., it is a vector space over the field K with the
operations inherited from V ).

Theorem [Characterization of subspaces]

Let V be a vector space over the field K. A non–empty subset U ⊆ V is a subspace of V if and only if
U is closed under addition and field multiplication defined in V , i.e.,

u+ v ∈ U, ∀u, v ∈ U, (∗)
λ · u ∈ U, ∀λ ∈ K, ∀u ∈ U. (∗∗)

Conditions (∗) and (∗∗) are equivalent to

λu+ µv ∈ U, ∀λ, µ ∈ K, ∀u, v ∈ U.
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Vector spaces

Necessary condition for subspaces

From (∗∗) it follows that 0V ∈ U. In fact, given λ = 0 and u ∈ U, we have

0 · u = 0U ∈ U,

where 0U is the identity element in U with respect to the addition defined in V . But, in a vector space,
the identity element is unique, then

0U = 0V =⇒ 0V ∈ U.

Example

The sets {0} and V are subspaces of V . They are called trivial subspaces.

Property

If U is a subspace of V , then dimK(U) ≤ dimK(V ).
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Exercises

1 Let S1 = {(x , y , z) ∈ R3 : x + 2y + 3z = 0; 2x + z = 0} ⊆ R3. Check if S is a subspace of R3.

2 Let S2 = {(x , y , z) ∈ R3 : x + 3y + 5z = 1; 2x + 4z = 0} ⊆ R3. Check if S is a subspace of R3.

Example

Then:

the solutions set of a homogeneous linear system with coefficients in a field K is a subspace of Kn;

the solutions set of a non–homogeneous linear system with coefficients in a field K is not a
subspace of Kn;

if the subset is defined by a non–linear system, we cannot deduce a priori if it is a subspace.

Exercises

1 The set S3 = {(x , y) ∈ R2 : y2 = 0} is a subspace of R2?

2 The set S4 = {(x , y) ∈ R2 : x2 + y2 = 0} is a subspace of R2?

3 The set S5 = {(x , y) ∈ R2 : x ≥ 0, y ≥ 0} is a subspace of R2?

4 The set S6 = {(x , y) ∈ R2 : ex = 1} is a subspace of R2?

5 The set S7 = {(x1 + x2, 2x1, x2, 1) ∈ R4 : x1, x2 ∈ R} is a subspace of R4?
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Vector spaces

Span

Let V be a vector space over the field K, and S = {v1, . . . , vn} a system of generators for V .
Then, the set of all linear combinations of the vectors vi , i.e.,

span(S) = span(v1, . . . , vn) =

{
n∑

i=1

λivi , λi ∈ K, i = 1, . . . , n

}

is called the span of {v1, . . . , vn} (or span of S).
span(S) is a subspace of V , called the subspace generated by S , or the linear closure of S .

Exercises

1 Let V = R and v ∈ R a non zero vector. Compute span(v).

2 Let V = R2 and v1 = (1, 1), v2 = (2, 2). Compute span(v1, v2).

3 Let V = R3 and v1 = (0, 0, 1), v2 = (0, 1, 0). Compute span(v1, v2).

4 Let V = R3 and v1 = (1, 0, 2), v2 = (0,−1, 0), v3 = (2,−2, 4). Compute span(v1, v2, v3).

5 Let V = R4 and v1 = (7,−4, 1, 0), v2 = (−5, 1, 0, 2). Verify if the vector
w = (1, 0, 4, 8) ∈ span(v1, v2).
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Vector spaces

Theorem

Let V be a vector space over the field K, {v1, . . . , vn} a set of linearly independent vectors of V , and
S = span(v1, . . . , vn).
If ∃w ∈ V such that w /∈ S , then {v1, . . . , vn,w} is a set linearly independent vectors.

Theorem

Consider n + 1 vectors v1, . . . , vn, vn+1 in a vector space V over a field K.
Then:

span(v1, . . . , vn) ⊆ span(v1, . . . , vn, vn+1);

span(v1, . . . , vn) = span(v1, . . . , vn, vn+1) if and only if vn+1 ∈ span(v1, . . . , vn).

Remark

From last theorem, given v1, . . . , vn, vn+1 ∈ V , we have:

if v1, . . . , vn, vn+1 are linearly independent =⇒ span(v1, . . . , vn) ̸= span(v1, . . . , vn, vn+1);

if v1, . . . , vn, vn+1 are linearly dependent =⇒ span(v1, . . . , vn) = span(v1, . . . , vn, vn+1).
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Vector spaces

Example

Let us consider the following vectors in R3:

v1 = (1, 0, 1), v2 = (−1, 3, 2), v3 = (−3, 3, 0).

It is immediate to verify that
{v1, v2, v3}

is a set of linearly dependent vectors.
But, we have also that

{v1, v2}, {v1, v3}, {v2, v3}

are sets of linearly independent vectors.
From the previous theorem, it follows that

span(v1, v2, v3) = span(v1, v2) = span(v1, v3) = span(v2, v3).
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Vector spaces

Problem: determine a basis from a system of generators

Let V be a vector space over a field K, with dimK(V ) = n and S = {v1, . . . , vk} ⊆ V a system of
generators for V , with k > n.
In the case k ≤ n, we can distinguish:

if dimK(V ) = n > k , then the set {v1, . . . , vk} is not a system of generators;

if dimK(V ) = n = k , then the set {v1, . . . , vk} is already a basis for V .

By excluding the above cases, our aim is to extract a basis from a system of generators, i.e., we want to
determine a maximal subset of linerly independent vectors from the generators.
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Vector spaces

Determine a basis from a system of generators: how to proceed

Let V be a vector space over a field K, with dimK(V ) = n, and S = {v1, . . . , vk} ⊆ V a system of
generators for V , with k > n.
Then:

1 Consider the first vector v1 ∈ S : if it is v1 = 0 we exclude it; otherwise, we keep it.

2 Consider the second vector v2 ∈ S . We keep it:

if v2 ̸= 0 and v1 has been excluded;
if v1 have been kept, and v1, v2 are linearly independent.

If noone of these cases is satisfied, we have to exclude v2.

3 Consider the third vector v3 ∈ S : we keep it if v1, v2, v3 are linearly independent.

4 Continue until you run out all vectors in S .

Finally, the set of not excluded vectors forms an extracted basis from the system of generators.
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Example

Given the vectors in R3

v1 = (2,−1, 6), v2 = (−6, 3,−18), v3 = (1, 0, 1), v4 = (1, 1,−3),

determine a basis for S = span(v1, v2, v3, v4) and its dimension.

Solution

Consider v1. We have that v1 = (2,−1, 6) ̸= (0, 0, 0), then we keep it.

Consider now v2 = (−6, 3,−18), that is not a zero vector. Since v2 = −3v1, it follows that v1 and
v2 are linearly dependent. This implies that we have to exclude v2.

Consider now v3 = (1, 0, 1). Since v1 and v3 are linearly independent (check it!), we keep v3.

Finally, considering v4 = (1, 1,−3), we note that v4 = 3v3 − v1, i.e., v1, v3, v4 are not linearly
independent. Then, we have to exclude v4.

We can conclude that a basis for S = span(v1, v2, v3, v4) is

B = {v1, v3}, with dimR(S) = 2.
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Vector spaces

Exercise

Given the vectors in R3

v1 = (1, 0,−3), v2 = (2, 1,−5), v3 = (0, 4, 4),

determine a basis for S = span(v1, v2, v3) and its dimension.

Problem: determine a basis for a subspace defined by a homogeneous linear system

Let V be a vector space over a field K, with dimK(V ) = n, and U ⊆ V a subspace of V defined as

U = {(x1, . . . , xn) ∈ Kn : f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0},

where fi = 0 (i = 1, . . . ,m) are homogeneous linear equations.
We need to:

1 determine solutions of the homogeneous linear system fi = 0 (i = 1, . . . ,m);

2 express the solutions as a linear combination of the involved parameters; the vectors appearing in
this linear combination form a basis for the subspace U.
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Example

Given the subspace V of R3 defined as

V = {(x , y , z) ∈ R3 : x − y + 2z = 0},

determine dimension and a basis for V .

Solution

From the equation defining the subspace V we can write

y = x + 2z .

Then, the solution set is made by

(x , x + 2z , z) = x(1, 1, 0) + z(0, 2, 1), with x , z ∈ R.

A basis for V is
BV = {(1, 1, 0), (0, 2, 1)}

and
dimR(V ) = 2.
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Vector spaces

Exercises

1 Given the vectors in R5

v1 = (1, 1, 1, 1, 1), v2 = (2, 2, 2, 2, 2), v3 = (0, 1,−2, 3, 1), v4 = (1, 2,−1, 4, 2),

determine a basis for S = span(v1, v2, v3, v4) and its dimension.

2 Determine a basis and the dimension of the subspace V of R3 defined as

V = {(a, b, 0), a, b ∈ R}.

3 Determine a basis and the dimension of the subspace V of R5 defined as

V = {(a− b, b − c , 0, a− c , a− 2b + c), a, b, c ∈ R}.

4 Determine a basis and the dimension of the subspace V of R5 defined as

V = {(x1, x2, x3, x4, x5) ∈ R5 : x1 − x3 + 2x4 + x5 = 0, x2 + 3x4 + x5 = 0}.
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Vector spaces

Operations between subspaces: Sum

Let U and V be subspaces of a finite–dimensional vector space W . The sum of the subspaces U and V ,
denoted by U + V , is defined as

U + V = {w ∈ W : w = u+ v, with u ∈ U, v ∈ V }.

The sum U + V is a subspace of W , and contains U and V , as subspaces.

Operations between subspaces: Intersection

Let U and V be subspaces of a finite–dimensional vector space W . The intersection of the subspaces U
and V , denoted by U ∩ V , is defined as

U ∩ V = {w ∈ W : w ∈ U, w ∈ V }.

The intersection U ∩ V is a subspace of W .
Furthermore, U ∩ V is a subspace of U and a subspace of V .
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Vector spaces

How to determine dimension and basis of the sum of two subspaces

Let W be a vector space over the field K, U and V subspaces of W , with dimK(U) = s and
dimK(V ) = t.
At first, we have to determine

BU = {u1, . . . ,us}, BV = {v1, . . . , vt},

i.e., the two basis for U and V , respectively.
Then, the set

BU ∪ BV = {u1, . . . ,us , v1, . . . , vt}

is a system of generators for the subspace U + V , and we can extract a basis from it.
Furthermore, the number of elements of the extracted basis is the dimension of U + V .

Example

Determine a basis and the dimension of the sum of two subspaces U and V of R4 defined as the
following systems of generators

U = span(u1,u2), V = span(v1, v2),

where

u1 = (3, 0, 0, 0), u2 = (0, 2, 0, 0), v1 = (0, 0,−1, 0), v2 = (0, 7, 1, 0).
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Vector spaces

Solution
.
We observe that u1 and u2 are linearly independent, and form a basis for U:

BU = {(3, 0, 0, 0), (0, 2, 0, 0)}.

Also the vectors v1 and v2 are linearly independent, and form a basis for V :

BV = {(0, 0,−1, 0), (0, 7, 1, 0)}.

Then, consider the union of the two basis

BU ∪ BV = {(3, 0, 0, 0), (0, 2, 0, 0), (0, 0,−1, 0), (0, 7, 1, 0)},

that is a system of generators of U + V , and extract a basis from BU ∪ BV .
It is

BU+V = {(3, 0, 0, 0), (0, 2, 0, 0), (0, 0,−1, 0)}.

Since |BU+V | = 3, we have dimR(U + V ) = 3.
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Vector spaces

Example

Determine a basis and the dimension of the sum of two subspaces U and V of R3 defined as

U = {(x , y , z) ∈ R3 : −2x + y = 0, x + z = 0},
V = {(x , y , z) ∈ R3 : 2x + y − z = 0}.

Solution

Compute a basis BU for U and BV for V .
Consider the system of equations defining U:{

− 2x + y = 0,

x + z = 0,

whose a possible solution is
y = 2x , z = −x .

Then, a generic element of U can be written as

(x , 2x ,−x) = x(1, 2,−1), x ∈ R.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 54/201



. . . Solution

It follows that a basis for U is
BU = {(1, 2,−1)}.

Also, a possible solution for the equation defining V is

z = 2x + y ,

and a generic element of V can be written as

(x , y , 2x + y) = x(1, 0, 2) + y(0, 1, 1), x , y ∈ R.

It follows that a basis for V is
BV = {(1, 0, 2), (0, 1, 1)}.

Then, we consider
BU ∪ BV = {(1, 2,−1), (1, 0, 2), (0, 1, 1)}

that is a system of generators for the subspace U + V , and extract a basis for U + V . Since the above
vectors are linearly independent, we have

BU+V = {(1, 2,−1), (1, 0, 2), (0, 1, 1)}.

It is |BU+V | = 3 and dimR(U + V ) = 3.
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Vector spaces

Example

Determine a basis and the dimension of the sum of two subspaces U and V of R3 defined as

U = span((1, 1,−1), (1, 2,−2)),

V = {(x , y , z) ∈ R3 : y − z = 0}.

Solution

Compute a basis BU for U and BV for V .
The vectors (1, 1,−1), (1, 2,−2) are linearly independent, then they are a basis for U, i.e.,

BU = {(1, 1,−1), (1, 2,−2)}.

Consider the equation defining V :
y − z = 0,

whose a possible solution is
y = z .

Then, a generic element of V can be written as

(x , z , z) = x(1, 0, 0) + z(0, 1, 1), x , z ∈ R.
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Vector spaces

. . . Solution

It follows that a basis for V is
BV = {(1, 0, 0), (0, 1, 1)}.

Then, we consider
BU ∪ BV = {(1, 0, 0), (0, 1, 1), (1, 1,−1), (1, 2,−2)}

that is a system of generators for the subspace U + V , and extract a basis for U + V .
We have that

(1, 0, 0), (0, 0, 1), (1, 1,−1)

are linearly independent and
(1, 2,−2) = 2(1, 1,−1)− (1, 0, 0).

Then, a basis for U + V is
BU+V = {(1, 0, 0), (0, 1, 1), (1, 1,−1)}.

It is |BU+V | = 3 and dimR(U + V ) = 3.
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Vector spaces

How to determine dimension and basis of the intersection of two subspaces defined by system of
generators?

Let W be a vector space over the field K, U and V subspaces of W , with dimK(U) = s, and
dimK(V ) = t.
At first, we have to extract

BU = {u1, . . . ,us}, BV = {v1, . . . , vt},

i.e., the two basis for U and V , respectively.
Then, we note that every vector w ∈ U ∩ V if and only if w ∈ U and w ∈ V . This means that w can be
expressed as linear combination of both vectors of the bases BU and BV , i.e.,

w =
s∑

i=1

αiui , αi ∈ K, (∗)

and

w =
t∑

j=1

βjvj , βj ∈ K.
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. . . How to determine dimension and basis of the intersection of two subspaces defined by system of
generators?

It follows that
s∑

i=1

αiui =
t∑

j=1

βjvj

that can be written as
s∑

i=1

αiui −
t∑

j=1

βjvj = 0,

i.e., we have a linear system in the unknowns αi (i = 1, . . . , s) and βj (j = 1, . . . , t).
Now, determine the solutions (s + t scalars)

α1, . . . , αs , β1, . . . , βt .

Then, we consider the s solutions α1, . . . , αs and insert them into (∗), i.e.,

w =
s∑

i=1

αiui .

A basis for U ∩ V is determined by expressing the vector w as a linear combination of the involved free
parameters.
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Vector spaces

Example

Determine a basis for the intersection of the following subspaces of R4:

U = span((1, 0, 3, 0), (0, 1,−1, 1)),

V = span((1, 1, 4, 1), (−1, 1, 2, 1), (0, 3, 5, 3)).

Solution

At first we note that the vectors in U and V are linearly independent (separately). Then, bases for U
and V are

BU = {(1, 0, 3, 0), (0, 1,−1, 1)},
BV = {(1, 1, 4, 1), (−1, 1, 2, 1), (0, 3, 5, 3)}.

We have that every vector w ∈ R4 belongs to U ∩ V if and only if w ∈ U and w ∈ V . This implies that
there exist the scalars α1, α2, β1, β2, β3 ∈ R such that

w = α1(1, 0, 3, 0) + α2(0, 1,−1, 1) = (α1, α2, 3α1 − α2, α2),

w = β1(1, 1, 4, 1) + β2(−1, 1, 2, 1) + β3(0, 3, 5, 3) =

= (β1 − β2, β1 + β2 + 3β3, 4β1 + 2β2 + 5β3, β1 + β2 + 3β3).
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Example

By equating both right sides, we obtain

α1 = β1 − β2

α2 = β1 + β2 + 3β3

3α1 − α2 = 4β1 + 2β2 + 5β3

α2 = β1 + β2 + 3β3,

whose solution is
β1 = −3β2 − 4β3,

α1 = β1 − β2 = −4β2 − 4β3,

α2 = β1 + β2 + 3β3 = −2β2 − β3.

Now, substitute α1 and α2 into w = α1(1, 0, 3, 0) + α2(0, 1,−1, 1), that is

w = (−4β2 − 4β3)(1, 0, 3, 0) + (−2β2 − β3)(0, 1,−1, 1) =

= (−4β2 − 4β3, 0,−12β2 − 12β3, 0) + (0,−2β2 − β3, 2β2 + β3,−2β2 − β3) =

= (−4β2 − 4β3,−2β2 − β3,−10β2 − 11β3,−2β2 − β3).
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Example

Then, we have

w = (−4β2 − 4β3,−2β2 − β3,−10β2 − 11β3,−2β2 − β3) = −β2(4, 2, 10, 2)− β3(4, 1, 11, 1).

It follows that a basis for U ∩ V is

BU∩V = {(4, 2, 10, 2), (4, 1, 11, 1)},

with
dimR(U ∩ V ) = 2.
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Vector spaces

How to determine dimension and basis of the intersection of two subspaces defined by homogeneous
linear equations?

Let W be a vector space over the field K, with dimK(W ) = n, U and V subspaces of W defined as

U = {(x1, . . . , xn) ∈ Kn : f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0},
V = {(x1, . . . , xn) ∈ Kn : g1(x1, . . . , xn) = 0, . . . , gt(x1, . . . , xn) = 0},

where fi = 0 (i = 1, . . . , s) and gj = 0 (j = 1, . . . , t) are homogeneous linear equations.
We need to:

1 construct the homogeneous linear system made by s + t equations

f1(x1, . . . , xn) = 0, . . . , fs(x1, . . . , xn) = 0,

g1(x1, . . . , xn) = 0, . . . , gt(x1, . . . , xn) = 0,

and determine a solution set;

2 extract a basis from the solution set of the homogeneous linear system (by expressing the solutions
as a linear combination of the involved parameters; the vectors appearing in this linear combination
form a basis).
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Example

Determine a basis for the intersection of the following subspaces of R3:

U = {(x , y , z) ∈ R3 : x − y + 2z = 0},
V = {(x , y , z) ∈ R3 : x − 3y = 0, x + 5y + 8z = 0}.

Solution. Construct the linear system
x − y + 2z = 0,

x − 3y = 0,

x + 5y + 8z = 0.

We note that only the first and second equation are independent, then we have the system

x − y + 2z = 0, x − 3y = 0,

with two equations in three unknowns. A possible solution is

x = 3y , z = −y .

Then

(x , y , z) = (3y , y ,−y) = y(3, 1,−1),

and a basis for U ∩ V is BU∩V = {(3, 1,−1)}.
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Vector spaces

Theorem [Grassmann]

Let W be a finite–dimensional vector space over a field K, and U and V be subspaces of W .
Then

dimK(U + V ) = dimK(U) + dimK(V )− dimK(U ∩ V ).

Direct sum

Let W be a finite–dimensional vector space over a field K, and U and V be subspaces of W .
The vector space W is called direct sum of U and V , and is denoted by W = U

⊕
V , if and only if

1 U + V = W ;

2 U ∩ V = {0}.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 65/201



Vector spaces

Theorem

Let W be a finite–dimensional vector space over a field K, and U and V be subspaces of W , with W
that is direct sum of U and V .
Then,

W = U
⊕

V ⇒ dimK(W ) = dimK(U) + dimK(V ).

Proof

In fact, from Grassman theorem:

dimK(W ) = dimK(U + V ) = dimK(U) + dimK(V )− dimK(U ∩ V ) =

= dimK(U) + dimK(V )− 0 = dimK(U) + dimK(V ).

Remark

The converse is not in general true, i.e.,

dimK(W ) = dimK(U) + dimK(V ) ⇏ W = U
⊕

V .
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Example

Let W = R3 and the subspaces of R3

U = span((1, 2, 0), (1, 1, 1)), V = span((0, 0, 3)).

The bases for U and V are

BU = {(1, 2, 0), (1, 1, 1)}, BV = {(0, 0, 3)},

then dimR(U) = 2 and dimR(V ) = 1. A system of generators for U + V is

BU ∪ BV = {(1, 2, 0), (1, 1, 1), (0, 0, 3)},

that are linearly independent. Then, a basis for U + V is

BU+V = {(1, 2, 0), (1, 1, 1), (0, 0, 3)},

i.e., dimR(U + V ) = 3. Also, U + V is a subspace of R3 with dimension 3, then U + V = R3.
From Grassman formula, it is

dimR(U ∩ V ) = dimR(U) + dimR(V )− dimR(U + V ) = 2 + 1− 3 = 0,

i.e., R3 = U
⊕

V since U ∩ V = {0} and U + V = R3.
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Vector spaces

Example

Let W = R3 and
U = span((1, 0, 0), (0, 0, 1)), V = span((0, 0, 3)).

The bases for U and V are

BU = {(1, 0, 0), (0, 0, 1)}, BV = {(0, 0, 3)},

then dimR(U) = 2 and dimR(V ) = 1.
We have

3 = dimR(R3) = dimR(U) + dimR(V ) = 2 + 1,

but R3 is not direct sum of U and V , since U ∩ V ̸= {0}. In fact, for k ̸= 0 every vector (0, 0, k)
belongs both to U and V . The same can be proved by using Grassman theorem!
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Vector spaces

. . . Example

In fact, considering
BU ∪ BV = {(1, 0, 0), (0, 0, 1), (0, 0, 3)},

we can extract a basis for U + V , that is

BU+V = {(1, 0, 0), (0, 0, 1)},

i.e., dimR(U + V ) = 2.
Then, from Grassman formula

dimR(U + V ) = dimR(U) + dimR(V )− dimK(U ∩ V ),

we have
2 = 2 + 1− dimR(U ∩ V ) ⇒ dimR(U ∩ V ) = 1 ̸= 0.
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Vector spaces

Theorem

Let W be a finite–dimensional vector space over a field K, and U and V be subspaces of W , with W
that is direct sum of U and V . Then,

W = U
⊕

V ⇐⇒ every vector w ∈ W can be written in at most one way as

w = u+ v, with u ∈ U, v ∈ V .

Theorem

Let W be a finite–dimensional vector space over a field K, and U and V be subspaces of W .
Let BU = {u1, . . . ,us} be a basis for U and BV = {v1, . . . , vt} a basis for V .
Then,

W = U
⊕

V ⇐⇒ BU ∪ BV = {u1, . . . ,us , v1, . . . , vt} is a basis for W .
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Example

Verify if W = U
⊕

V , with W = R3 and the subspaces of R3

U = span((1, 0, 0), (0, 1, 0)), V = span((2, 0, 0), (0, 0, 1)).

Solution

The bases for U and V are

BU = {(1, 0, 0), (0, 1, 0)}, BV = {(2, 0, 0), (0, 0, 1)},

then dimR(U) = dimR(V ) = 2. A system of generators for U + V is

BU ∪ BV = {(1, 0, 0), (0, 1, 0), (2, 0, 0), (0, 0, 1)},

and extracting a basis from it, we have

BU+V = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

i.e., dimR(U + V ) = 3. Also, U + V is a subspace of R3 with dimension 3, then U + V = R3.
But, R3 is not direct sum of U and V , since U ∩ V ̸= {0}.
In fact, from Grassman formula

dimR(U ∩ V ) = dimR(U) + dimR(V )− dimR(U + V ) = 2 + 2− 3 = 1.
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Example

Verify if W = U
⊕

V , with W = R4 and the subspaces of R4

U = span((1, 0, 0, 0)), V = span((0,−1, 2, 3)).

Solution

The bases for U and V are BU = {(1, 0, 0, 0)}, BV = {(0,−1, 2, 3)}, then dimR(U) = dimR(V ) = 1.
From the previous theorem

4 = dimR(R4) ̸= dimR(U) + dimR(V ) = 1 + 1 = 2,

and we can conclude that R4 is not direct sum of U and V . For completeness, compute a basis for
U + V and U ∩ V . A system of generators for U + V is made by the vectors

BU ∪ BV = {(1, 0, 0, 0), (0,−1, 2, 3)},

that are linearly independent. Then, BU+V = {(1, 0, 0, 0), (0,−1, 2, 3)}, i.e., dimR(U + V ) = 2. Then,
U + V is a subspace of R4 with dimension 2, and we have

4 = dimR(R4) ̸= dimR(U + V ) = 2 ⇒ U + V ̸= R4.

We also note that U ∩ V = {0}. In fact, from Grassman formula

dimR(U ∩ V ) = dimR(U) + dimR(V )− dimR(U + V ) = 1 + 1− 2 = 0.
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Example

Verify if W = U
⊕

V , with W = R2 and the subspaces of R2

U = {(x , y) ∈ R2 : x + y = 0}, V = {(x , y) ∈ R2 : x = 0}.

Solution

Let us look for a basis of U ∩ V . Consider the system

x + y = 0, x = 0.

It has only the solution x = y = 0, then U ∩ V = {0} and dimR(U ∩ V ) = 0. Then, look for bases of U
and V . A solution to x + y = 0 is y = −x . An element of U can be written as

(x ,−x) = x(1,−1).

Then
BU = {(1,−1)}, dimR(U) = 1.

An element of V can be written as
(0, y) = y(0, 1).

Then
BV = {(0, 1)}, dimR(V ) = 1.
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. . . Example

We have
2 = dimR(R2) = dimR(U) + dimR(V ) = 1 + 1 = 2,

and we can conclude that R2 = U
⊕

V .
Also, using Grassman formula,

dimR(U + V ) = dimR(U) + dimR(V )− dimR(U ∩ V ) = 1 + 1− 0 = 2,

we confirmt that U + V = R2, and a basis for U + V is determined extracting it from the system of
generators

BU ∪ BV = {(1,−1), (0, 1)}.

Since the two vectors are linearly independent, we have

BU+V = {(1,−1), (0, 1)}.
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Vector spaces

Exercises

1 Given the subspaces of R4

U = {(x1, x2, x3, x4) ∈ R4 : x1 − x4 = 0, x2 + x4 = 0},
V = {(x1, x2, x3, x4) ∈ R4 : x1 + 2x2 + x4 = 0, x3 − x4 = 0},

determine dimension and a basis for U, V , U + V and U ∩ V .

2 Given the standard canonical basis {e1, e2, e3, e4} of R4 and the subspaces

U = span(e1, e2, e3),

V = span(e2 − e3, e2 + e3, e4),

determine dimension and a basis for U, V , U + V and U ∩ V .
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Vector spaces

Exercises

3 Given the subspaces of R3

U = {(2a, b, a) ∈ R3 : a, b ∈ R},
V = {(c , 0, c) ∈ R3 : c ∈ R},

determine dimension and a basis for U, V , U + V and U ∩ V .

4 Given the subspaces of R3

U = span((1, 1,−1), (1,−1, 0)),

V = {(x , y , z) ∈ R3 : x + z = 0},

determine dimension and a basis for U, V , U + V and U ∩ V .

5 Let V and U be subspaces of R4 such that

dimR(U) = 3, dimR(V ) = 2.

Is it possible that U ∩ V = {0}?

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 76/201



Vector spaces

Supplementary subspaces

Let W be a finite–dimensional vector space over a field K, and U and V be subspaces of W .
The subspaces U and V are said to be supplementary (or complementary) in W if and only if

W = U
⊕

V .

Operations between subspaces: Union

Let W be a finite–dimensional vector space over a field K, and U and V be subspaces of W . Then, the
union of the subspaces U and V , denoted by U ∪ V , is defined as

U ∪ V = {w ∈ W : w ∈ U or w ∈ V }.

In general, the union U ∪ V is not a subspace of W !

Remark

U ∪ V is subspace of W ⇐⇒ U ⊆ V or V ⊆ U.
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Vector spaces

Example: union of subspaces

Let W = R2 and the subspaces of R2

U = {(x , y) ∈ R2 : x = 0}, V = {(x , y) ∈ R2 : y = 0}.

By definition,
U ∪ V = {w ∈ W : w ∈ U or w ∈ V },

i.e.,
U ∪ V = {(x , y) ∈ R2 : x = 0 or y = 0}.

Verify if U ∪ V is subspace of R2.
Check the first property of subspaces. For all vectors u, v ∈ U ∪V , we want to prove that u+ v ∈ U ∪V .
Let u = (0, 1) ∈ U and v = (1, 0) ∈ V .
It is

(1, 0) + (0, 1) = (1, 1).

But (1, 1) /∈ U and (1, 1) /∈ V ; then, it follows that (1, 1) /∈ U ∪ V .
The set U ∪ V is not subspace of R2 since it is not closed with respect to the addition!
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Bilinear form

Let V and W be vector spaces over a field K. A bilinear form is a function

f : V ×W → K
(v,w) 7→ f (v,w)

that is linear in V and in W , i.e.,

f (λu+ µv,w) = λf (u,w) + µf (v,w), ∀u, v,∈ V , ∀w ∈ W , ∀λ, µ ∈ K;

f (v, λu+ µw) = λf (v,u) + µf (v,w), ∀v,∈ V , ∀u,w ∈ W , ∀λ, µ ∈ K.

In particular, if V = W , the function f : V × V → K is called bilinear form over V.

Properties

If f : V ×W → K is a bilinear form, then:

f (0V ,w) = 0 = f (v, 0W ), ∀v ∈ V , ∀w ∈ W .

If f : V × V → K is a bilinear form over V , then:

f is nondegenerate if f (v,w) = 0 ∀w ∈ V ⇒ v = 0;

f is symmetric if f (v,w) = f (w, v) ∀v,w ∈ V ;

f is skew–symmetric or antisymmetric if f (v,w) = −f (w, v) ∀v,w ∈ V .
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Euclidean spaces

Scalar product

Let V be a vector space over the field R, and consider the binary operation

· : V × V → R
(u, v) 7→ u · v

with the following properties:

(1) (λu+ µv) ·w = λu ·w + µv ·w, ∀u, v,w ∈ V , ∀λ, µ ∈ R (linearity);

(2) u · v = v · u, ∀u, v ∈ V (symmetry);

(3) u · u ≥ 0 ∀u ∈ V , and u · u = 0 if and only if u = 0 (positive–definiteness).

This operation is called scalar product (it can be alternatively denoted by ⟨u, v⟩), and the vector space V
is said to be Euclidean. The above properties imply also that

∀u ∈ V u · 0 = 0 · u = 0;

u · (λv + µw) = λu · v + µu ·w, ∀u, v,w ∈ V , ∀λ, µ ∈ R;
(u+ v) · (u+ v) = u · u+ 2u · v + v · v, ∀u, v ∈ V .

Hence, a scalar product on a real vector space is a positive–definite symmetric bilinear form.
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Euclidean spaces

Example: canonical scalar product

The binary operation · : Rn × Rn → R defined as:

u · v = (u1, . . . , un) · (v1, . . . , vn) =
n∑

i=1

uivi = u1v1 + . . .+ unvn

is a scalar product in Rn, and it is called the canonical (or euclidean) scalar product.

Exercises

Let V = R3. Verify if the following binary operations are scalar products:

1 u · v = u1v1 + u2v2 + u3v3;

2 u · v = u1v1 + u1v2 − u2v1 + u2v2 + u3v3;

3 u · v = 2u1v1 − u1v2 − u2v1 + 3u2v2 + u3v3;

4 u · v = −u1v1 + u1v2 + u2v1 − u2v2 − u3v3;

5 u · v = u1v1 + u1v2 + u2v1 + u2v2 + u3v3;

6 u · v = 5u1v1 + 4u1v3 + 5u2v2 + 2u2v3 + 4u3v1 + 2u3v2 + 5u3v3.
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Euclidean spaces

Orthogonal vectors

Let · : V × V → R be a scalar product in a real vector space V .
Two vectors u, v ∈ V are said to be orthogonal with respect to the assigned scalar product in V if

u · v = 0.

Set of orthogonal vectors

Let · : V × V → R be a scalar product in a real vector space V .
A family of vectors {v1, . . . , vm} ⊆ V is said to be a set of orthogonal vectors with respect to the
assigned scalar product · in V if

vi · vj = 0 ∀i ̸= j i , j = 1, . . . ,m.
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Euclidean spaces

Orthogonal basis

Let · : V × V → R be a scalar product in a real vector space V .
A set of vectors {v1, . . . , vn} ⊆ V is an orthogonal basis for V if and only if:

1 {v1, . . . , vn} is a basis for V ;

2 vi · vj = 0 ∀i ̸= j i , j = 1, . . . , n.

Example

The standard canonical basis B = {e1, e2, e3} of R3 is an orthogonal basis of R3 with respect to the
canonical scalar product. In fact;

e1 · e2 = (1, 0, 0) · (0, 1, 0) = 1× 0 + 0× 1 + 0× 0 = 0,

e1 · e3 = (1, 0, 0) · (0, 0, 1) = 1× 0 + 0× 0 + 0× 1 = 0,

e2 · e3 = (0, 1, 0) · (0, 0, 1) = 0× 0 + 1× 0 + 0× 1 = 0.
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Property

Let V be a real vector space with dimR(V ) = n, and · : V × V → R be a scalar product in V . Let
{v1, . . . , vm} ⊆ V be a set of non-zero vectors, with m ≤ n.

If {v1, . . . , vm} is a set of orthogonal vectors ⇒ {v1, . . . , vm} is a set of linearly independent vectors.

Proof.

Let {v1, . . . , vm} orthogonal non zero-vectors. We have to prove that

λ1v1 + . . .+ λmvm = 0 =⇒ λi = 0 ∀i = 1, . . . ,m.

Multiplying both sides by vi :
vi · (λ1v1 + . . .+ λmvm) = vi · 0,

i.e., due to linearity of scalar product,

λ1vi · v1 + . . .+ λmvi · vm = 0.

Since vi · vj = 0 ∀i ̸= j and vi ̸= 0 ∀i , the previous relation reduces to

λivi · vi = 0.

Due to the positive definiteness of the scalar product, it follows that λi = 0 ∀i = 1, . . . ,m.
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Euclidean spaces

Remark

The converse is not in general true:

If {v1, . . . , vm} is a set of linearly independent vectors ⇏ {v1, . . . , vm} is a set of orthogonal vectors.

In fact, consider V = R3 and the canonical scalar product in R3.
The vectors

v1 = (1, 3, 0), v2 = (0, 2, 1)

are linearly independent but not orthogonal.
It is

v1 · v2 = (1, 3, 0) · (0, 2, 1) = 1× 0 + 3× 2 + 0× 1 = 6 ̸= 0.

Remark

Given a scalar product in a real vector space and a set of linearly independent vectors, we will see how to
construct a set of orthogonal vectors!
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Property

Let V be a real vector space with dimR(V ) = n, and · : V × V → R be a scalar product in V . Let
{v1, . . . , vn} ⊆ V be a set of non-zero vectors.

If {v1, . . . , vn} is a set of orthogonal vectors ⇒ {v1, . . . , vn} is an orthogonal basis of V .

Example

Let V = R3 and the canonical scalar product · : R3 × R3 → R defined as

x · y = (x1, x2, x3) · (y1, y2, y3) = x1y1 + x2y2 + x3y3.

Prove that the vectors

v1 = (1,−1, 0), v2 = (1, 1, 0), v3 = (0, 0, 1)

form an orthogonal basis of R3.
Solution. Since dimR(R3) = 3 and we have 3 vectors, we only need to show that v1, v2, v3 are
orthogonal. It is:

v1 · v2 = (1,−1, 0) · (1, 1, 0) = 1× 1 + (−1)× 1 + 0× 0 = 0,

v1 · v3 = (1,−1, 0) · (0, 0, 1) = 1× 0 + (−1)× 0 + 0× 1 = 0,

v2 · v3 = (1, 1, 0) · (0, 0, 1) = 1× 0 + 1× 0 + 0× 1 = 0.
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Euclidean spaces

Exercises

Let V = R3 and the following vectors

v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 1/2, 1).

Then:

1 verify that B = {v1, v2, v3} is a basis of R3;

2 verify that the binary operation · : R3 × R3 → R defined as

x · y = (x1, x2, x3) · (y1, y2, y3) = x1y1 + 2x2y2 − x2y3 − x3y2 + 2x3y3

is a scalar product in R3;

3 verify if B is an orthogonal basis with respect to the scalar product ·.
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Euclidean spaces

Cauchy–Schwarz inequality

Let V be a real vector space and · : V × V → R be a scalar product in V , i.e., V is an Euclidean space.
Then, for all u, v ∈ V it is:

|u · v|2 ≤ (u · u)(v · v).

Proof.

Let u ̸= 0 and v ̸= 0 (if u = 0 or v = 0 the inequality is trivially satisfied).
Then, for all λ ∈ R it is

(u+ λv) · (u+ λv) = λ2v · v + 2λu · v + u · u ≥ 0.

Since this is an algebraic second degree equation in λ that is non-negative, it follows that the
discriminant have to be less than or equal to zero, i.e.,

|u · v|2 − (u · u)(v · v) ≤ 0.
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Euclidean spaces

Vector norm

In a Euclidean space V , we can introduce the norm of a vector as a function

∥ · ∥ : V → R
v 7→ ∥v∥

that satisfies the axioms:

∥v∥ ≥ 0, ∀v ∈ V ;

∥v∥ = 0 if and only if v = 0;

∥αv∥ = |α| ∥v∥, ∀α ∈ R, ∀v ∈ V ;

∥u+ v∥ ≤ ∥u∥+ ∥v∥, ∀u, v ∈ V .

Property

The triangle inequality is equivalent to

∥u∥ − ∥v∥ ≤ ∥u− v∥, ∀u, v ∈ V .

In fact:
∥u∥ = ∥u− v + v∥ ≤ ∥u− v∥+ ∥v∥ ⇒ ∥u∥ − ∥v∥ ≤ ∥u− v∥.
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Euclidean spaces

Lp norm

In a Euclidean space V , with dim(V )R = n, a class called Lp norms (or Hölder norms) are well–defined
for any parameter p ∈ [1,∞):

∥v∥p =

(
n∑

i=1

|vi |p
) 1

p

.

Properties of Lp norms

If dim(V )R = 1 all Lp norms, with p ≥ 1, are equal to the absolute value.

For p < 1 the class Lp is not a norm, since the triangle inequality is violated.
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Euclidean spaces

1-norm

For p = 1:

∥v∥1 =
n∑

i=1

|vi |.

2-norm or Euclidean norm

For p = 2:

∥v∥2 =

√√√√ n∑
i=1

v2
i .

∞-norm or max norm

For p → ∞:
∥v∥∞ = lim

p→∞
∥v∥p = max

1≤i≤n
|vi |.
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Example

In the plane, a norm can be rapresented by a unitary ball. Let V = R2 be an Euclidean space, and

S = {x ∈ R2 : ∥x∥ = 1}

the unitary ball. Graphically, we have

with the unitary ball in 1-norm, the the unitary ball in 2-norm, and the unitary ball in max-norm.
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Euclidean spaces

Induced–norm by a scalar product

Let V be a real vector space and · : V × V → R be a scalar product in V , i.e., V is an Euclidean space.
Then, the induced-norm by a scalar product is the function ∥ · ∥ : V → R defined as

∥v∥ =
√
v · v.

Induced–norm: properties

If ∥ · ∥ is an induced-norm, the Cauchy-Schwarz inequality can be written in the form

|u · v| ≤ ∥u∥ ∥v∥.

The triangle inequality can be proved by means of the Cauchy-Schwarz inequality; in fact:

∥u+ v∥2 = (u+ v) · (u+ v) = u · u+ v · v + 2u · v =

= ∥u∥2 + ∥v∥2 + 2u · v ≤ ∥u∥2 + ∥v∥2 + 2∥u∥ ∥v∥ = (∥u∥+ ∥v∥)2.

The 2-norm is an induced-norm by the euclidean scalar product; in fact:

∥v∥2 =
√
v2
1 + . . .+ v2

n =
√
v1v1 + . . .+ vnvn =

√
(v1, . . . , vn) · (v1, . . . , vn) =

√
v · v.
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Euclidean spaces

Equivalent norms

Let V be an Euclidean space. Two norms ∥ · ∥1, ∥ · ∥2, defined in V , are said to be equivalent if there
exist α, β ∈ R, with α > 0 and β > 0, such that

α∥v∥1 ≤ ∥v∥2 ≤ β∥v∥1, ∀v ∈ V .

Property

If dimR(V ) = n < +∞ all norms that can be defined in V are equivalent; in particular, 1-norm, 2-norm
and ∞-norm are equivalent.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 94/201



Euclidean spaces

Example

Let V = R3 and consider the scalar product defined as

x · y = 2x1y1 − x1y2 − x2y1 + 2x2y2 + x3y3.

The induced-norm by this scalar product is given by

∥x∥ =
√
x · x =

√
2x1x1 − x1x2 − x2x1 + 2x2x2 + x3x3 =

√
2x21 − 2x1x2 + 2x22 + x23 .

For example, if x = (1, 0, 1), it is

∥x∥ =
√
2x21 − 2x1x2 + 2x22 + x23 =

√
2× 12 − 2× 1× 0 + 2× 02 + 12 =

√
2 + 1 =

√
3.
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Normalized vector

Consider an Euclidean space, and a norm ∥ · ∥ : V → R.
If ∥v∥ = 1, then v is called a normalized or unit vector.

How to normalize a vector?

The normalization of a vector v ∈ V , with v ̸= 0, needs to determine a vector u ∈ V such that ∥u∥ = 1
and u, v are linearly dependent.
The normalized vector of v is given by

u =
v

∥v∥
.
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Euclidean spaces

Example

Let V = R2 with the euclidean scalar product. Normalize the vector v = (3,−4).

Solution

∥v∥ =
√
v · v =

√
(3,−4) · (3,−4) =

√
3× 3 + (−4)× (−4) =

√
9 + 16 =

√
25 = 5.

Then,

u =
v

∥v∥
=

1

5
(3,−4) =

(
3

5
,−4

5

)
.

It is ∥u∥ = 1. In fact:

∥u∥ =
√
u · u =

√(
3

5
,−4

5

)
·
(
3

5
,−4

5

)
=

√
9

25
+

16

25
=

√
1 = 1.
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Euclidean spaces

Example

Let V = R3 and consider the scalar product defined as

x · y = 2x1y1 − x1y2 − x2y1 + 2x2y2 + x3y3.

Normalize the vector v = (1, 1, 0).

Solution

∥v∥ =
√
v · v =

√
(1, 1, 0) · (1, 1, 0) =

√
2× 1× 1− 1× 1− 1× 1 + 2× 1× 1 + 0 =

√
2− 2 + 2 =

√
2.

Then,

u =
v

∥v∥
=

1√
2
(1, 1, 0) =

(
1√
2
,
1√
2
, 0

)
.

It is ∥u∥ = 1. In fact:

∥u∥ =
√
u · u =

√(
1√
2
,
1√
2
, 0

)
·
(

1√
2
,
1√
2
, 0

)
=

√
2

1√
2

1√
2
− 1√

2

1√
2
− 1√

2

1√
2
+ 2

1√
2

1√
2
+ 0 = 1.
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Euclidean spaces

Set of orthonormal vectors

Let V be an Euclidean space and ∥ · ∥ : V → R be a vector norm.
A family of vectors {v1, . . . , vm} ⊆ V is said to be a set of orthonormal vectors if

1 vi · vj = 0 ∀i ̸= j i , j = 1, . . . ,m;

2 ∥vi∥ = 1 ∀i = 1, . . . ,m.

Orthonormal basis

Let V be an Euclidean space and ∥ · ∥ : V → R be a vector norm.
A set of vectors {v1, . . . , vn} ⊆ V is an orthonormal basis for V if and only if:

1 {v1, . . . , vn} is a basis for V ;

2 vi · vj = 0 ∀i ̸= j i , j = 1, . . . , n;

3 ∥vi∥ = 1 ∀i = 1, . . . ,m.

Example

The standard canonical basis of Rn

B = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}

is an orthonormal basis with respect to the euclidean scalar product.
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Example

The basis of R3

B = {(2, 0, 0), (0, 2, 0), (0, 0, 2)}

is an orthogonal basis with respect to the euclidean scalar product, but is not orthonormal. We can
obtain and orthonormal basis by dividing each vector by the corresponding norm. It is:

∥v1∥ =
√
22 + 02 + 02 =

√
4 = 2;

∥v2∥ =
√
02 + 22 + 02 =

√
4 = 2;

∥v3∥ =
√
02 + 02 + 22 =

√
4 = 2.

Then, the corresponding orthonormal vectors are

u1 =
v1
∥v1∥

=

(
2

2
,
0

2
,
0

2

)
= (1, 0, 0);

u2 =
v2
∥v2∥

=

(
0

2
,
2

2
,
0

2

)
= (0, 1, 0);

u3 =
v3
∥v3∥

=

(
0

2
,
0

2
,
2

2

)
= (0, 0, 1).
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Exercises

1 Let V = R3, and the scalar product defined as

x · y = 2x1y1 − x1y2 − x2y1 + 3x2y2 + x3y3.

Given the vectors v1 = (1, 1, 1), v2 = (2, 0,−1), v3 = (0,−3, 3), and denoting with ∥ · ∥ the
induced norm by the scalar product, compute ∥v1∥, ∥v2∥, ∥v3∥.

2 Let V = R2 and consider the scalar product defined as

x · y = 2x1y1 − x1y2 − x2y1 + 3x2y2.

Using the induced norm, normalize the vector v = (1, 1).

3 Let V = R4 and consider the euclidean scalar product. Using the induced norm, normalize the
vectors v1 = (1, 1, 1, 1), v2 = (−1, 0, 2,−2), v3 = (2, 3

√
2, 0,

√
3), and verify if v1, v2, v3 are

orthogonal.

4 Let V = R2, and the scalar product defined as

x · y = 6x1y1 + x1y2 + x2y1 + x2y2.

Prove that the vectors v1 =

(
1

3
,
1

3

)
and v2 =

(
− 2

3
√
5
,

7

3
√
5

)
form an orthonormal basis in R2.
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Euclidean spaces

Exercises

5 Let B be a basis for R3 defined as

B = {(1,−2, 0), (−1, 0,−2), (0,−2,−1)}.

Verify if B is an orthonormal basis with respect to the following scalar product:

x · y = 5x1y1 + 4x1y3 + 5x2y2 + 2x2y3 + 4x3y1 + 2x3y2 + 5x3y3.

6 Let B be a basis for R2 defined as
B = {(1, 0), (2, 1)},

and the scalar product
x · y = x1y1 − 2x1y2 − 2x2y1 + 5x2y2.

Verify if B is an orthogonal basis with respect to the introduced scalar product and normalize it.
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Problem: determining orthonormal basis

Let V be an Euclidean vector space, and {e1, . . . , en} a basis for V . Given two vectors u =
∑n

i=1 uiei
and v =

∑n
i=1 viei , their scalar product is

u · v =

(
n∑

i=1

uiei

)
·

 n∑
j=1

vjej

 =
n∑

i=1

n∑
j=1

uivj(ei · ej).

It is always possible to construct a new basis {f1, . . . , fn} for V provided that

fi · fj = δij , ∀i , j = 1, . . . , n,

i.e., we are looking for an orthonormal basis {f1, . . . , fn}. In such a case, the scalar product becomes:

u · v =
n∑

i=1

n∑
j=1

uivj(fi · fj) =
n∑

i=1

n∑
j=1

uivjδij =
n∑

i=1

uivi ,

i.e., it reduces to the euclidean scalar product, and the induced 2–norm (euclidean norm) is naturally
recovered:

∥u∥ =
√
u · u =

√√√√ n∑
i=1

n∑
j=1

uiuj(fi · fj) =

√√√√ n∑
i=1

n∑
j=1

uiujδij =

√√√√ n∑
i=1

u2i .
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Euclidean spaces

Gram-Schmidt orthonormalization

Let V be an Euclidean vector space, and {e1, . . . , en} a basis for V . Then, we can construct an
orthonormal basis {f1, . . . , fn}, i.e., such that

fi · fj = δij , ∀i , j = 1, . . . , n.

Proof.

Let
f1 =

e1
∥e1∥

,

f2 =
e2 − (e2 · f1)f1
∥e2 − (e2 · f1)f1∥

,

f3 =
e3 − (e3 · f1)f1 − (e3 · f2)f2
∥e3 − (e3 · f1)f1 − (e3 · f2)f2∥

,

. . .

fn =
en − (en · f1)f1 − (en · f2)f2 − . . .− (en · fn−1)fn−1

∥en − (en · f1)f1 − (en · f2)f2 − . . .− (en · fn−1)fn−1∥
.
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Exercises

1 Given the vectors in R3

v1 = (1, 1, 0), v2 = (2, 0, 0),

determine an orthonormal basis for S = span(v1, v2) with respect to the euclidean scalar product.

2 Given the vectors in R4

v1 = (1, 1, 0, 0), v2 = (1, 0, 0, 0), v3 = (0, 0, 0, 1),

determine an orthonormal basis for S = span(v1, v2, v3) with respect to the euclidean scalar product.

3 Orthonormalize the basis B of R3

B = {(−1, 0, 1), (1, 0, 2), (0, 1, 0)}

with respect to the euclidean scalar product.

4 Orthonormalize the basis B of R3

B = {(0, 0, 1), (2, 0, 0), (0,−1, 0)}

with respect to the scalar product defined as

x · y = x1y1 + x1y3 + x2y2 + x3y1 + 2x3y3.
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Linear operators

Linear operator

Let U and V be vector spaces over the field K, with dimK(U) = n and dimK(V ) = m.
Then, a mapping Φ, say

Φ: U → V

u 7→ Φ(u)

is a linear operator if
Φ(u+ v) = Φ(u) + Φ(v), ∀u, v ∈ U,

Φ(λu) = λΦ(u), ∀λ ∈ K, ∀u ∈ U.

Theorem [Characterization of linear operators]

Let U and V be vector spaces over the field K, with dimK(U) = n and dimK(V ) = m.
Then, a mapping Φ: U → V is a linear operator if and only if

Φ(λu+ µv) = λΦ(u) + µΦ(v), ∀λ, µ ∈ K, ∀u, v ∈ U.

This means that a linear operator preserves vector space operations.
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Linear operators

Necessary condition for linear operators

From
Φ(λu) = λΦ(u), ∀λ ∈ K, ∀u ∈ U,

it follows that
Φ(0U) = 0V .

In fact, given λ = 0 and u ∈ U, we have

Φ(0U) = Φ(0u) = 0Φ(u) = 0V ,

where 0U and 0V are the identity elements in U and V with respect to the addition.
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Linear operators

Exercises

Verify if the following mappings are linear operators:

1 Φ: R3 → R3, with
Φ(x , y , z) = (2x + y , 3y , z + 5);

2 Φ: R2 → R2, with
Φ(x , y) = (x , 3y);

3 Φ: R2 → R, with
Φ(x , y) = x2 + y ;

4 Φ: R3 → R3, with
Φ(x , y , z) = (x + 2y , x + 4z , y − 3z);

5 Φ: R3 → R, with
Φ(x , y , z) = x + 3z .
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Linear operators

Kernel of a linear operator

Let Φ: U → V be a linear operator, with dimK(U) = n and dimK(V ) = m.
The kernel of Φ, denoted by kerΦ, is a subspace of U defined as

kerΦ = {u ∈ U : Φ(u) = 0}.

Image of a linear operator

Let Φ: U → V be a linear operator, with dimK(U) = n and dimK(V ) = m.
The image of Φ, denoted by ImΦ, is a subspace of V defined as

ImΦ = {v ∈ V : v = Φ(u), with u ∈ U}.

Properties

Let Φ: U → V be a linear operator, with dimK(U) < ∞.

The linear operator Φ is injective if and only if ker Φ = {0}.
The linear operator Φ is surjective if and only if ImΦ = V .

dimK(U) = dimK(kerΦ) + dimK(ImΦ).
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Linear operators

Linear isomorphism

Let Φ: U → V be a linear operator, with dimK(U) = n and dimK(V ) = m.
If Φ is bijective:

Φ is called linear isomorphism;

Φ−1 : V → U is a linear isomorphism, and Φ−1 is called inverse isomorphism;

U and V are isomorphic vector spaces;

the image under Φ of a basis in U is a basis in V .

Definitions

If Φ: U → U is a linear operator, Φ is called endomorphism of U.

If Φ: U → U is a linear isomorphism, Φ is called automorphism of U.
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Linear operators

Representation of linear operators

Let Φ: U → V be a linear operator, with dimK(U) = n and dimK(V ) = m. Let {e1, . . . , en} and
{f1, . . . , fm} bases for U and V , respectively. Then, given u ∈ U and v ∈ V , we have

u =
n∑

j=1

ujej , uj ∈ K,

v =
m∑
i=1

vi fi , vi ∈ K,

and, from Φ(u) = v, it follows that

Φ(u) = Φ

 n∑
j=1

ujej

 =
n∑

j=1

ujΦ(ej) =
m∑
i=1

vi fi = v.

But, every vector Φ(ej) can be written as a linear combination of the vectors fi (i = 1, . . . ,m), i.e.,

Φ(ej) =
m∑
i=1

Tij fi , j = 1, . . . , n.
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Linear operators

Representation of linear operators

We obtain
n∑

j=1

m∑
i=1

ujTij fi =
m∑
i=1

vi fi =⇒
m∑
i=1

vi −
n∑

j=1

Tijuj

 fi = 0.

In other words, the components of a vector u ∈ U are transformed according to the law

vi =
n∑

j=1

Tijuj , i = 1, . . . ,m.

The linear operator Φ determines a m × n matrix T = (Tij), where i counts the rows and j counts the
columns. Conversely, every m × n matrix T determines a linear operator.
Thus, after choosing bases of U and V , a matrix T defines the action of the linear operator Φ on any
vector, with the rule

Φ(ej) =
m∑
i=1

Tij fi , j = 1, . . . , n.

The matrix T is called the representation of the linear operator Φ.
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Linear operators
How to determine the linear operator associated to a matrix

A linear operator Φ: U → V maps a column vector u = (u1, . . . , un) into the column vector

v = Tu =


T11u1 + T12u2 + · · ·+ T1nun
T21u1 + T22u2 + · · ·+ T2nun

...
Tm1u1 + Tm2u2 + · · ·+ Tmnun

 ∈ Km,

where the matrix T is

T =


T11 T12 · · · T1n

T21 T22 · · · T2n

...
...

. . .
...

Tm1 Tm2 · · · Tmn

 ∈ Km×n.

Then, every matrix T ∈ Km×n defines a linear operator Φ: Kn → Km such that for every vector u ∈ Kn

it is Φ(u) = Tu ∈ Km.

Remark

The number of columns of T is egual to dim(Kn) = n, whereas the number of rows of T is egual to
dim(Km) = m.
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Linear operators

Example

Determine the linear operator defined by the matrix

A =

1 2
4 5
7 8

 ∈ R3×2.

Solution

The number of columns of A is egual to dim(R2) = 2, whereas the number of rows of A is egual to
dim(R3) = 3. This means we have to consider a generic vector x = (x1, x2)

T ∈ R2 and compute Ax:

Ax =

1 2
4 5
7 8

(x1
x2

)
=

 x1 + 2x2
4x1 + 5x2
7x1 + 8x2

 .

Then, we obtain the linear operator Φ: R2 → R3 defined by the matrix A:

Φ(x1, x2) = (x1 + 2x2, 4x1 + 5x2, 7x1 + 8x2).
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Linear operators

Exercise

Determine the linear operator defined by the matrix

A =

2 2 −1
1 0 3
0 4 6

 ∈ R3×3.
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Linear operators

How to determine the matrix associated to a linear operator

Let Φ: U → V a linear operator, with dimK(U) = n and dimK(V ) = m, and the basis BU = {e1, . . . , en}
and BV = {f1, . . . , fm} for U and V , respectively.
It is useful to remember the following steps for constructing the matrix corresponding to a linear
operator in an assigned basis:

compute Φ(ej), i.e., the images of the vectors of the basis BU .

the images Φ(ej) must be expressed as a linear combination of the vectors of the basis BV ,i.e.,

Φ(ej) =
m∑
i=1

Tij fi ;

the coordinates of the obtained vectors are the columns of the associated matrix.

Remarks

The matrices associated to a linear operator are as many as the bases, i.e., they are infinite!

Linear operators act on vectors, whereas the associated matrices act on the coordinates with respect
to the bases.

The associated matrix to Φ: U → V has dimK(V ) = m rows and dimK(U) = n columns.
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Linear operators

Exercises

Let Φ: R3 → R2 be a linear operator defined by

Φ(x , y , z) = (x + y , z).

Determine the matrix associated to Φ with respect to the basis:

1

BR3 = {(1, 0, 1), (1, 0, 0), (1, 1, 1)},
BR2 = {(0, 1), (1, 1)};

2

BR3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
BR2 = {(1, 0), (0, 1)}.
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Linear operators

Exercises

Let Φ: R2 → R2 be a linear operator defined by

Φ(x , y) = (x − y , 2x + y).

Determine the matrix associated to Φ with respect to the basis:

1

BR2 = {(1, 2), (1, 0)},
B′
R2 = {(1, 1), (0, 3)};

2

BR2 = {(1, 0), (0, 1)},
B′
R2 = {(1, 2), (0, 1)}.
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Linear operators

Linear operators defined by image of vectors

Let U and V be vector spaces over the field K, and Φ: U → V a linear operator.
The linear operator Φ is defined by the images of vectors {u1, . . . ,un} ∈ U if it is written as

Φ(ui ) = vi ∀i = 1, . . . , n.

Example

The linear operator Φ: R2 → R3 with

Φ(1, 0) = (1, 2, 3), Φ(0, 5) = (4, 0, 7),

is defined by images of vectors.

Theorem

Let U and V be vector spaces over the field K, with dimK(U) = n and dimK(V ) = m, and
BU = {e1, . . . , en} a basis for U, and {v1, . . . , vn} vectors of V . Then, there exists a unique linear
operator Φ: U → V such that

Φ(ei ) = vi ∀i = 1, . . . , n.
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Linear operators

How to determine the matrix associated to a linear operator defined by image of vectors

Let U and V vector spaces over the field K, with the basis BU = {e1, . . . , en} and BV = {f1, . . . , fm} for
U and V , respectively. Consider a linear operator Φ: U → V defined by the images of vectors
{u1, . . . ,un}, say

Φ(ui ) = vi ∀i = 1, . . . , n.

Suppose that {u1, . . . ,un} is a basis for U, so that we are sure there exists a unique linear operator
Φ: U → V . We need to compute Φ(ej). This task can be done in the following way:

express vectors of the basis of U as a linear combination of the vectors {u1, . . . ,un}, i.e.,

ej =
n∑

i=1

Tijui , j = 1, . . . , n;

apply Φ to the vectors ej :

Φ(ej) = Φ

(
n∑

i=1

Tijui

)
=

n∑
i=1

TijΦ(ui ) =
n∑

i=1

Tijvi , j = 1, . . . , n;

finally, by expressing Φ(ej) as linear combinations of the vectors {f1, . . . , fm}, we obtain the
coordinates entering the j–th column of the associated matrix.
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Linear operators

Exercises

Let Φ: R2 → R3 be a linear operator defined by the image of vectors

Φ(1, 1) = (1, 2, 0),

Φ(2, 1) = (−1, 3, 1).

Determine the matrix associated to Φ with respect to the basis:

1

BR2 = {(1, 0), (0, 1)},
BR3 = {(1, 1, 1), (1, 0, 0), (0,−1, 1)};

2

BR2 = {(1, 0), (0, 1)},
BR3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)};
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Linear operators

Exercises

Let Φ: R2 → R3 be a linear operator defined by the image of vectors

Φ(3,−1) = (1,−1, 2),

Φ(1, 2) = (−2,−1, 2).

Determine the matrix associated to Φ with respect to the basis:

1

BR2 = {(4, 1), (−3, 8)},
BR3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)};

2

BR2 = {(1, 0), (0, 1)},
BR3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)};
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Operations with linear operators

Sum of linear operators

If f : U → V and g : U → V are two linear operators, then also their sum f + g : U → V is a linear
operator, which is defined by

(f + g)(x) = f (x) + g(x),

to which corresponds the sum matrix of the matrices of f and g .

Product of linear operators with scalars

If f : U → V is linear operator and λ ∈ K, then the map λf : U → V , defined by (λf )(x) = λ(f (x)), is a
linear operator, to which corresponds the product of the matrix of f with the scalar λ.

Composition of linear operators

If f : U → V and g : V → W are two linear operators, then also their composition g ◦ f : U → W is a
linear operator, which is defined by

(g ◦ f )(x) = g(f (x)).

The matrix of the operator g ◦ f is the matrix product of the corresponding matrices g and f .

Examples

The null matrix corresponds to the null operator 0 : x → 0.

The identity matrix corresponds to the identity operator I : x → x.
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Matrices - Operations

Definition

Given a matrix A = (aij) ∈ Km×n (1 = 1, . . . ,m, j = 1, . . . n), m × n is the size of A. If m = n, A is a
square matrix and n is the order of A.

Addition

The sum of two matrices A,B ∈ Km×n is the matrix C ∈ Km×n, C = A+ B, given by the elements

cij = aij + bij , i = 1, . . . ,m, j = 1, . . . , n.

Properties:

Addition is commutative: A+ B = B + A, ∀A,B ∈ Km×n;

Addition is associative: (A+ B) + C = A+ (B + C ), ∀A,B,C ∈ Km×n.

Product with scalars

The product of a scalar λ and a matrix A ∈ Km×n is given a matrix with the elements

(λa)ij = λaij , i = 1, . . . ,m, j = 1, . . . , n.
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Vector spaces of matrices

The set of all matrices of a fixed size forms a vector space!
Let Km×n denote the set of m × n matrices with entries in the field K. Then, Km×n is a vector space
over K, with the matrix addition and product with scalars.

Properties

The identity element is the zero matrix.

dimK(Km×n) = m × n.

The concepts of linear independence, system of generators and basis do not change; we have to
take into account that every element of the vector space Km×n is a matrix.

Dimensions and canonical basis for vector space of matrices

Let K = R. Then, the canonical basis of Rm×n is the set given by the m × n matrices

Eij = (eij) ∈ Rm×n

such that all elements are zero except the element eij which is equal to 1.
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Example

Consider the vector space R3×2 (its elements are the rectangular matrices with 3 rows and 2 columns).
We have dimR(R3×2) = 3× 2 = 6.
The canonical basis is formed by the 6 matrices

E11 =

1 0
0 0
0 0

 , E12 =

0 1
0 0
0 0

 , E21 =

0 0
1 0
0 0

 ,

E22 =

0 0
0 1
0 0

 , E31 =

0 0
0 0
1 0

 , E32 =

0 0
0 0
0 1

 .
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Matrix operations

Matrix-matrix product

The product of two matrices A ∈ Km×p, B ∈ Kp×n is the matrix C ∈ Km×n, C = AB, given by the
elements

cij =

p∑
k=1

aikbkj , i = 1, . . . ,m, j = 1, . . . , n.

Properties:

Matrix product is associative: (AB)C = A(BC );

Matrix product is distributive: (A+ B)C = AC + BC and C (A+ B) = CA+ CB;

Matrix product is (in general) non commutative: AB ̸= BA.

Matrix-vector product

The product of a matrix A ∈ Rm×p and a vector u ∈ Rp is the vector v ∈ Rm, v = Au, given by the
elements

vi =

p∑
k=1

aikuk , i = 1, . . . ,m.
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Matrix operations

Transposition of a matrix

The transpose of a matrix A ∈ Km×n is the matrix AT ∈ Kn×m such that aTij = aji (i = 1, . . . ,m,
j = 1, . . . , n).
Properties:

(AT )
T
= A, ∀A ∈ Km×n;

Linearity: (λA+ µB)T = λAT + µBT , ∀A,B ∈ Km×n, ∀λ, µ ∈ K;

(AB)T = BTAT , ∀A ∈ Km×p,∀B ∈ Kp×n.

Identity matrix

I ∈ Kn×n : I = (δij) i , j = 1, . . . , n.

Null matrix

O ∈ Kn×n such that all entries are 0.
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Matrices

Upper triangular matrix

A ∈ Kn×n is an upper triangular matrix if aij = 0 ∀i > j , i , j = 1, . . . , n.

Lower triangular matrix

A ∈ Kn×n is a lower triangular matrix if aij = 0 ∀i < j , i , j = 1, . . . , n.

Diagonal matrix

A ∈ Kn×n is a diagonal matrix if aij = 0 ∀i ̸= j , i , j = 1, . . . , n.

Submatrix

A submatrix of a matrix is obtained by deleting any collection of rows and/or columns.
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Matrices

Symmetric matrix

A ∈ Kn×n is a symmetric matrix if aij = aji ∀i , j = 1, . . . , n, i.e., A = AT .

Skew-symmetric matrix

A ∈ Kn×n is a skew-symmetric matrix if aij = −aji ∀i , j = 1, . . . , n, i.e., A = −AT .

Invertible matrix

A ∈ Kn×n is an invertible matrix if there exists B ∈ Kn×n such that AB = BA = I.
B is called the inverse matrix of A and is denoted by B = A−1.
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Matrices

Trace

The trace of a matrix A ∈ Kn×n is given by

tr(A) =
n∑

i=1

aii .

Properties:

the set of matrices A ∈ Kn×n such that tr(A) = 0 is a vector space;

tr(A+ B) = tr(A) + tr(B), ∀A,B ∈ Kn×n;

tr(λA) = λtr(A), ∀λ ∈ K, ∀A ∈ Kn×n;

tr(A) = tr(AT ), ∀A ∈ Kn×n;

tr(AB) = tr(BA) ∀A ∈ Km×n, ∀B ∈ Kn×m.
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Determinant

To each matrix A ∈ Kn×n we can associate the determinant as a unique function det : Kn×n → K such
that:

det(AB) = det(A) det(B), ∀A,B ∈ Kn×n;

det(I) = 1;

det(A) ̸= 0 if and only if A is invertible.

Laplace expansion

The determinant of a matrix A ∈ Kn×n can be computed by the recursive formula

det(A) =
n∑

i=1

(−1)i+jaijMij , ∀j = 1, . . . , n,

or, equivalently

det(A) =
n∑

j=1

(−1)i+jaijMij , ∀i = 1, . . . , n,

where Mij is the (i , j)-minor, i.e., the determinant of the submatrix of A obtained by removing the i-th
row and the j-th column of A. The term Cij = (−1)i+jMij is called the cofactor of aij in A.
The computational cost is O(n!).
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Determinant: properties

Given A ∈ Kn×n:

det(λA) = λn det(A), ∀λ ∈ K;

det(AT ) = det(A);

det(A−1) =
1

det(A)
;

if A is a (lower or upper) triangular matrix then det(A) = Πn
i=1aii ;

interchanging any pair of rows or columns of a matrix multiplies its determinant by −1;

adding a scalar multiple of one row (column) to another row (column) does not change the value of
the determinant;

det(A) = 0 if

- some (row) column is such that all its entries are zero;
- two rows (columns) are proportional;
- some row (column) can be expressed as a linear combination of the other rows (columns).

Minor

Let A ∈ Km×n and k an integer with 0 < k ≤ m, and k ≤ n. A minor or order k of A is the determinant
of a k × k submatrix obtained from A by deleting m − k rows and n − k columns.
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Cofactor matrix

Given A ∈ Kn×n, the cofactor matrix C of A is the matrix whose entries are the cofactors of A, i.e.,

Cij = (−1)i+jMij , i , j = 1, . . . , n.

Adjugate matrix

The adjugate (or classical adjoint) matrix of A ∈ Kn×n is the transpose of the cofactor matrix C , i.e.,
adj(A) = CT , with components

adj(A)ij = Cji = (−1)i+jMji , i , j = 1, . . . , n.

Inverse matrix

A matrix A ∈ Kn×n is invertible if and only if det(A) ̸= 0.
The inverse of the matrix A is the adjugate matrix of A times the reciprocal of the determinant of A, i.e.,

A−1 =
1

det(A)
adj(A).

Property: (AB)−1 = B−1A−1.
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Orthogonal matrix

A ∈ Kn×n is an orthogonal matrix if AT = A−1, that means AAT = ATA = I .
Properties: det(A) = 1 or det(A) = −1.

Rank

The rank of a matrix A ∈ Km×n, denoted by rank(A), is the maximum order of the not null minors of A,
i.e., the maximum order of the square submatrices which can be extracted from A so that their
determinant is not null.
Equivalently:

rank(A) is the maximum number of linearly independent rows of A;

rank(A) is the maximum number of linearly independent columns of A;

rank(A) = dimK(ImΦ), with Φ: Kn → Km such that Φ(u) = Au.

It follows that
0 ≤ rank(A) ≤ min{m, n}.

Properties:

rank(A) = 0 if and only if A is the null matrix;

rank(A) = rank(AT );

if rank(A) = min{m, n}, A is said to be full rank;

if m = n and det(A) ̸= 0, then rank(A) = n, i.e., the rank coincides with the order of A.
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Rank-nullity theorem

Let Φ: U → V be a linear operator between two vector spaces U and V over a field K, with
dimK(U) < ∞, i.e., U is finite-dimensional.
It is

dimK(U) = dimK(kerΦ) + dimK(ImΦ).

In the vector space of matrices Km×n, we associate to each matrix A ∈ Km×n a linear operator
Φ: Kn → Km such that Φ(u) = Au.
Since rank(A) = dimK(ImΦ) and n = dimK(Kn) is the number of columns of A, the rank-nullity theorem
reads

n = dimK(kerΦ) + rank(A).
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Rank of a matrix by means of determinants

Given A ∈ Km×n:

let i1 = min{m, n}. Compute all minors of order i1. If there exists at least a non-zero minor of order
i1, then rank(A) = i1; otherwise, it is rank(A) < i1 and go to next step;

let i2 = i1 − 1, and compute all minors of order i2. If there exists at least a non-zero minor of order
i2, then rank(A) = i2. If this is not true, it is rank(A) < i2, and we need to reiterate the process;

the algorithm stops when we find a non-zero minor, and the rank is egual to the order of the
non-zero minor.

Remark

The number of all minors of different orders can be great even for a matrix of not large dimension. For
example, a matrix of size 4× 5 has 5 minors of the fourth order, 40 minors of the third order, 60 minors
of the second order and 20 minors of the first order (minors of the first order coincide with elements of a
matrix), i.e., the matrix has 125 minors. However, such a method of determining the rank of a matrix is
useless due to a great number of computations!
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Bordering minor

Let A ∈ Km×n and consider a submatrix M of A of order k , with k ≤ min{m, n}.
A bordering minor of A is the determinant of every submatrix of A of order k + 1 obtained by adding a
row and a column to the submatrix M.

Bordering theorem (Kronecker)

Let A ∈ Km×n and k ≤ min{m, n}. We have:
rank(A) = k if and only if there exists a non-zero minor of A of order k and all its bordering minors of
order k + 1 are equal to zero.

Bordering algorithm

Find a non-zero minor M of order k .

Compute all its bordering minors: if all bordering minors are equal to zero, the algorithm stops, and
the rank of the matrix is equal to the order of the minor M. Otherwise, go to next step.

If we find a non-zero bordering minor M ′ of order k + 1, then compute all bordering minors of order
k + 2, i.e., repeat the described cycle of computations.

There will be finitely many such cycles and the number of such cycles doesn’t exceed the number of
rows and columns.
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Leading coefficient

For each row in a matrix, if the row does not consist of only zeros, then the leftmost non-zero entry is
called the leading coefficient (or pivot) of that row.

Row echelon form

A matrix is in row echelon form if:

all rows consisting of only zeros are at the bottom;

the leading coefficient of a non-zero row is always strictly to the right of the leading coefficient of
the row above it.

Reduced row echelon form

A matrix is in reduced row echelon form if:

it is in row echelon form;

all the leading coefficients are equal to 1;

in every column containing a leading coefficient, all of the other entries in that column are zero.
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Examples

This matrix is not in row echelon form: 
1 a0 a1 a2 a3
0 a1 2 a4 a5
0 1 0 1 a6
0 0 a7 0 0


This matrix is in row echelon form: 

1 a0 a1 a2 a3
0 0 2 a4 a5
0 0 0 1 a6
0 0 0 0 a7


This matrix is in reduced row echelon form: 1 0 a1 0 b1

0 1 a2 0 b2
0 0 0 1 b3


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Gaussian elimination

Gaussian elimination consists of a sequence of operations performed on the rows of a matrix in order to
transform it into an upper triangular form, i.e., in row echelon form.
This method can also be used to compute:

the rank of a matrix;

the determinant of a square matrix;

the inverse of a matrix (if it is invertible).

There are three types of elementary row operations:

1 swap the positions of two rows;

2 multiply a row by a non-zero scalar;

3 replace a row with the sum of that row and a multiple of another row.
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Gauss algorithm

Let A ∈ Km×n.

Choose the leftmost column Ck , with 1 ≤ k ≤ n with at least a non-zero entry. Set as a pivot the
element

max
1≤i≤m

|aik |.

If the pivot is not in the first row R1, swap R1 with the row containing the pivot.

Substitute the Ri (i > 1) row with a linear combination of the row Ri and that containing the pivot
in such a way the entries below the pivot are all zero, i.e.,

Ri −→ Ri +mikRk ,

where mik = − aik
akk

.

Repeat the process considering the submatrix obtained by removing the row and column containing
the pivot, until a row echelon form is reached.
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Determinant with Gauss elimination

After reducing a matrix A ∈ Kn×n into a upper triangular matrix B, we have to take into account:

each swap of rows changes the sign of the determinant;

if a row is multiplied by a scalar λ, then the determinant of the reduced matrix is equal to the
determinant of A multiplied by the scalar λ;

substituting a row with a linear combination of that row with another one does not change the
value of the determinant.

Let d be the product of the scalars by which the determinant has been multiplied, using the above rules.
Then, the determinant of A is the quotient by d of the product of the elements of the diagonal of B, i.e.,

det(A) =
Πn

i=1bii
d

.

The computation of the determinant using this procedure is the least demanding system known from the
computational point of view (polynomial growth O(n3) instead of factorial O(n!)).

Rank with Gauss elimination

Let A ∈ Km×n, and reduce it to a row echelon form. The rank of the matrix A is equal to the number of
pivots of the obtained row echelon matrix.
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Inverse matrix with Gauss-Jordan elimination

Given A ∈ Kn×n, row reduction can be used to compute its inverse matrix:

create an augmented matrix with the left side being the matrix A and the right side the n × n
identity matrix I, i.e., an n × 2n block matrix [A|I];
using row operations, determine the reduced row echelon form of the n × 2n block matrix [A|I];
the matrix A is invertible if and only if the left block can be reduced to the identity matrix I; in this
case, the right block of the final matrix is A−1, i.e., the result is a matrix [I|A−1].

If the algorithm is not able to reduce the left block to I, then A is not invertible.

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 144/201



Matrix norm

Norm

In the vector space Km×n, we can introduce a matrix norm as a function

∥ · ∥ : Km×n → R
A 7→ ∥A∥

that satisfies the axioms:

∥A∥ ≥ 0, ∀A ∈ Km×n;

∥A∥ = 0 if and only if A = O;

∥λA∥ = |λ| ∥A∥, ∀λ ∈ K, ∀A ∈ Km×n;

∥A+ B∥ ≤ ∥A∥+ ∥B∥, ∀A,B ∈ Km×n;

∥AB∥ ≤ ∥A∥ ∥B∥, ∀A ∈ Km×p, ∀B ∈ Kp×n.
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Matrix norm

Operator norm

Let ∥ · ∥α be a vector norm on Kn and ∥ · ∥β be a vector norm on Km. Since any m× n matrix A ∈ Km×n

induces a linear operator Φ: Kn → Km, we can define the induced norm (or operator norm) in Km×n as

∥A∥α,β = sup

{
∥Ax∥β
∥x∥α

: x ∈ Kn with x ̸= 0

}
.

This norm measures how much the mapping induced by A can stretch vectors.

Matrix norms induced by vector Lp-norms

The vector Lp-norms induce the operator norms ∥ · ∥p defined as

∥A∥p = sup

{
∥Ax∥p
∥x∥p

: x ∈ Kn with x ̸= 0

}
.
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Matrix norms induced by vector Lp-norms

Matrix norm induced by 1-norm

∥A∥1 = max
1≤j≤n

m∑
i=1

|aij |.

Matrix norm induced by ∞-norm

∥A∥∞ = max
1≤i≤m

n∑
j=1

|aij |.

Properties:

∥A∥1 = ∥AT∥∞;

if A = AT , then ∥A∥1 = ∥A∥∞.

Matrix norm induced by 2-norm (Spectral norm)

∥A∥2 =
√
ρ(A∗A),

where ρ is the largest eigenvalue of the matrix A∗A, and A∗ denotes the conjugate transpose (the
transpose if A ∈ Rn×n).
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Matrix norms induced by vector Lp-norms

Example: matrix norms induced by vector Lp-norms

Given the matrix

A =

−3 5 7 1
2 6 4 2
0 2 8 −1

 ,

we have:

∥A∥1 = max
1≤j≤4

3∑
i=1

|aij | =

= max(|−3|+ 2 + 0; 5 + 6 + 2; 7 + 4 + 8; 1 + 2 + | − 1|) = max(5; 13; 19; 4) = 19,

∥A∥∞ = max
1≤i≤3

4∑
j=1

|aij | =

= max(|−3|+ 5 + 7 + 1; 2 + 6 + 4 + 2; 0 + 2 + 8 + | − 1|) = max(16; 14; 11) = 16.
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Matrix norm

Consistent matrix norms

A matrix norm ∥ · ∥ on Km×n is called consistent with a vector norm ∥ · ∥α on Kn and a vector norm
∥ · ∥β on Km if

∥Ax∥β ≤ ∥A∥ ∥x∥α, ∀A ∈ Km×n, ∀x ∈ Kn.

In the special case with m = n and α = β, the norm ∥ · ∥ is also called compatible with ∥ · ∥α.

Remark

All induced norms are consistent by definition!
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Entry-wise matrix norms

Entry-wise matrix norms p-norm

Entry-wise matrix norms treat an m × n matrix as a vector of size m · n, and use one of the familiar
vector norms.
For p ∈ [1,∞):

∥A∥p =

 m∑
i=1

n∑
j=1

|aij |p
 1

p

.

Remark

Entry-wise p-norms are different from the induce Lp-norms!
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Entry-wise matrix norms

Entry-wise 1-norm

For p = 1, we have the entry-wise 1-norm defined by:

∥A∥1 =
m∑
i=1

n∑
j=1

|aij |.

Frobenius norm

For p = 2, we have the Frobenius norm defined by:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

a2ij .

Entry-wise ∞-norm (max norm)

For p → ∞, we have the entry-wise ∞-norm or max norm:

∥A∥max = max
1≤i≤m,1≤j≤n

|aij |.
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Entry-wise matrix norms

Example: entry-wise matrix norms

Given the matrix

A =

−3 5 7 1
2 6 4 2
0 2 8 −1

 ,

we have:

∥A∥1 =
3∑

i=1

4∑
j=1

|aij | = | − 3|+ 5 + 7 + 1 + 2 + 6 + 4 + 2 + 0 + 2 + 8 + | − 1| = 41,

∥A∥F =

√√√√ 3∑
i=1

4∑
j=1

a2ij =
√
32 + 52 + 72 + 12 + 22 + 62 + 42 + 22 + 02 + 22 + 82 + 12 =

√
213 ≈ 14.6,

∥A∥max = max
1≤i≤3,1≤j≤4

|aij | = 8.
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Linear systems

Definition

A linear system is a collection of linear equations, involving the same variables, that must be verified all
together.

General form

A general system of m linear equations with unknowns xj ∈ K (j = 1, . . . , n) can be written as
a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

...

am1x1 + am2x2 + . . .+ amnxn = bm,

where aij ∈ K (i = 1, . . . ,m, j = 1, . . . , n) are the coefficients of the system, and bi ∈ K (i = 1, . . . ,m)
are the constant terms. In components, the linear system reads

n∑
j=1

aijxj = bi , i = 1, . . . ,m.
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Linear systems

Matrix form

The linear system can we written in the matrix form

Ax = b,

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Km×n, x =


x1
x2
...
xn

 ∈ Kn, b =


b1
b2
...
bm

 ∈ Km.

A is called coefficient matrix or incomplete matrix, whereas x and b are the vectors of the unknowns and
constant terms, respectively. We can associate to the system Ax = b also the complete matrix (or
associated matrix, or augmented matrix) [A|b]:

[A|b] =

a11 · · · a1n
...

. . .
...

am1 · · · amn

∣∣∣∣∣∣∣
b1
...
bm

 ∈ Km×(n+1).
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Linear systems
Solution of a linear system

A n-tuple (x1, . . . , xn) ∈ Kn is a solution of the system if it satisfies all m equations. The set of all
possible solutions is called the solution set.
For a linear system three cases may occur:

the system has infinitely many solutions;

the system has a single unique solution;

the system has no solution.

Geometric interpretation

The geometric interpretation of a linear system depend on the number of the unknowns:

n = 2 ⇒ each linear equation determines a line in the two-dimensional space. Because a solution of
a linear system must satisfy all the equations, the solution set is the intersection of these lines, and
is hence either a line, a single point, or the empty set;

n = 3 ⇒ each linear equation determines a plane in three-dimensional space, and the solution set is
the intersection of these planes. The solution set may be a plane, a line, a single point, or the
empty set;

n > 3 ⇒ each linear equation determines a hyperplane in the n-dimensional space. The solution set
is the intersection of these hyperplanes, and is a flat, which may have any dimension lower than n.
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Linear systems

Indipendence

The equations of a linear system are independent if none of the equations can be derived from the
others. When the equations are independent, each equation contains new information about the
variables, and removing any of the equations increases the size of the solution set. For linear equations,
logical independence is the same as linear independence.

Consistency

If a linear system admits at least one solution, then it is called consistent (or compatible); otherwise, it is
inconsistent (or incompatible, or impossible).

Equivalent systems

Two systems are said to be equivalent if and only if they have the same solution set.

Homogeneous linear system

If bi = 0 ∀i = 1, . . . ,m, the linear system is called homogeneous.
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Linear systems

Solution set for homogeneous systems

A homogeneous linear system is always compatible, in fact the n-tuple (x1, . . . , xn) = (0, . . . , 0) is a
solution, called trivial solution.

The solution set of a homogeneous linear system with n unknowns and coefficients in K is a
subspace of Kn. In fact:

1 if x = (x1, . . . , xn) ∈ Kn and y = (y1, . . . , yn) ∈ Kn are two vectors representing solutions to a
homogeneous system, then the vector sum x+ y = (x1 + y1, . . . , xn + yn) ∈ Kn is also a
solution to the system;

2 if x = (x1, . . . , xn) ∈ Kn is a vector representing a solution to a homogeneous system, and
λ ∈ K is any scalar, then λx = λ(x1, . . . , xn) ∈ Kn is also a solution to the system.

Let Φ: Kn → Km defined as
Φ(x) = Ax.

We have that ker(Φ) = {x ∈ Kn : Φ(x) = 0} is the solution set for the homogeneous system
Ax = 0 and Im(Φ) = {y ∈ Km : y = Φ(x), with x ∈ Kn} is generated by the columns of A.
Due to rank-nullity theorem, the dimension of the solution set for homogeneous systems is

dimK(ker(Φ)) = n − rank(A).
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Linear systems

Relation to nonhomogeneous systems

There is a close relationship between the solutions to a linear system Ax = b and the solutions to the
corresponding homogeneous system Ax = 0. If u is any specific solution to the linear system Ax = b,
then the entire solution set can be described as

{u+ v : v is any solution to Ax = 0}.

Geometrically, the solution set for Ax = b is a translation of the solution set for Ax = 0.
This reasoning only applies if the system Ax = b admits solution. This occurs if and only if the vector
b ∈ Im(Φ), where Φ: Kn → Km is the linear operator defined as

Φ(x) = Ax.

In fact, Im(Φ) is generated by the columns of A, and therefore b ∈ Im(Φ) if and only if the span of the
columns of A contains b, i.e., if and only if the space generated by the columns of A equals the space
generated by the columns of [A|b]. This is equivalent to require that the matrices A and [A|b] have the
same rank (that is the Rouché-Capelli theorem). In such a way, since the the solution set for Ax = b is
obtained from a translation of the solution set for Ax = 0, the dimension of the solution set of the
system Ax = b is equal to the dimension of the solution set of the associated homogeneous system
Ax = 0, i.e., the dimension of both solution set is dimK(ker(Φ)) = n − rank(A).
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Linear systems

Rouché-Capelli theorem

A linear system Ax = b, with A ∈ Km×n, x ∈ Kn and b ∈ Km, admits solution (is compatible) if and
only if

rank(A) = rank(A|b),

i.e., the rank of its coefficient matrix A is equal to the rank of its augmented matrix [A|b]. The solution
set is a subspace of Kn with dimension n − rank(A).
In particular:

if rank(A) = rank(A|b) = n, the system admits a unique solution;

if rank(A) = rank(A|b) < n, the system admits ∞n−rank(A) solutions depending on n − rank(A)
parameters.
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Methods for solving linear systems

Elimination of variables

Let Ax = b be a compatible linear system, with A ∈ Km×n, x ∈ Kn and b ∈ Km. The simplest method
for solving the system Ax = b is to repeatedly eliminate variables.
This method can be described as follows:

1 solve the first equation with respect to a variable in terms of the other variables;

2 substitute this expression into the remaining equations; this yields a system of equations with m− 1
equations and n − 1 unknowns;

3 repeat until the system is reduced to a single linear equation; two situations may occur:

if rank(A) = rank(A|b) = n, the system Ax = b admits only one solution, and the obtained
linear equation involves only one unknown; solve this equation with respect to the involved
unknown, and then the remaining unknowns are determined by using backward substitutions;
if rank(A) = rank(A|b) < n, the system Ax = b admits ∞n−rank(A) solutions depending on
n − rank(A) parameters; in the last equations there are n − rank(A) unknowns that cannot be
eliminated and the remaining ones can be expressed in terms of these n − rank(A) unknowns.
Choosing as free parameters a set of n − rank(A) unknowns, the ∞n−rank(A) solutions can be
determined by means of backward substitutions.
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Methods for solving linear systems

Cramer’s rule for square systems

Consider a system of n linear equations with n unknowns, represented in matrix form as follows:

Ax = b,

with

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 ∈ Kn×n, x =

x1
...
xn

 ∈ Kn, b =

b1
...
bn

 ∈ Kn.

If det(A) ̸= 0, the system Ax = b has a unique solution, whose values for the unknowns are given by:

xi =
det(Ai )

det(A)
, i = 1, . . . , n,

where Ai is the matrix formed by replacing the i-th column of A by the column vector b.
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Methods for solving linear systems

Remark

Cramer’s method is suitable for computing the solution of n × n linear systems only if n is very small. In
practice, the method requires the computation of n + 1 determinants of n × n matrices. Applying
Laplace expansion, each of these requires n! multiplications, for a total of (n + 1)! multiplications.
Alternatively, the n + 1 determinants can be computed by means of the Gauss algorithm.

Cramer’s rule for rectangular systems

Consider a compatible system of m linear equations with n unknowns, represented in matrix form as

Ax = b,

where A ∈ Km×n, x ∈ Kn, and b ∈ Km.
If rank(A) = rank(A|b) = r < n, the system admits ∞n−r solutions that can be computed by means of
Cramer’s rule with the following steps:

let A′ be the submatrix of A associated to a non-zero minor of order r ;

delete from the original system the equations corresponding to the rows of A which are non
contained in A′, and assign as free parameters the n − r unknowns corresponding to the columns of
A that are not contained in A′;

thus, we obtain a square system that can be solved applying the Cramer’s rule.
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Methods for solving linear systems

Gauss elimination

Let Ax = b be a linear system of m equations with n unknowns, where A ∈ Km×n, x ∈ Kn and b ∈ Km.
In Gaussian elimination, the linear system Ax = b is represented by the augmented matrix [A|b], that
will be modified by using elementary row operations until it reaches a row echelon form. Because these
operations are reversible, the obtained augmented matrix [A|b] always represents a linear system that is
equivalent to the original one. Applying the Gauss algorithm, the augmented matrix [A|b] is reduced to a
row echelon form, and two situations may occur:

1 if one or more rows of the reduced matrix are in the form (0 . . . 0|k), with k ̸= 0, the system is
incompatible;

2 otherwise, the system is compatible and it admits ∞n−r solutions, where n is the number of the
unknowns, and r is the number of pivots of the reduced matrix.

If the system is compatible, we need to:

1 construct the linear system corresponding to the obtained row echelon matrix;

2 assign the role of free parameter to the n − r unknowns that do not correspond to the pivots;

3 determine the solutions of the system proceeding with the backward substitutions.
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Methods for solving linear systems

Backward substitution for triangular systems

Backward substitution is a procedure of solving a linear system Ax = b of n equations with n unknowns,
with A ∈ Kn×n, x ∈ Kn, b ∈ Kn, and A is an upper triangular matrix (row echelon form) whose diagonal
elements are not equal to zero. Since the matrix A is triangular, this procedure of solving a linear system
is a modification of the general substitution method and can be described using simple formulas.
A similar procedure of solving a linear system with a lower triangular matrix is called forward
substitution. The backward substitution can be considered as a part of the Gaussian elimination method
for solving linear systems.

Backward substitution: algorithm

The backward substitution algorithm can be represented as

xn =
bn
ann

,

xi =
bi −

∑n
j=i+1 aijxj

aii
, ∀i = n − 1, . . . , 1.
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Methods for solving linear systems

Forward substitution for triangular systems

Forward substitution is a procedure of solving a linear system Ax = b of n equations with n unknowns,
with A ∈ Kn×n, x ∈ Kn, b ∈ Kn, and A is a lower triangular matrix whose diagonal elements are not
equal to zero. Since the matrix A is triangular, this procedure of solving a linear system is a modification
of the general substitution method and can be described using simple formulas.
Nevertheless, the structure of the forward substitution for a lower triangular matrix is similar to the
structure of the backward substitution.

Forward substitution: algorithm

The forward substitution algorithm can be represented as

x1 =
b1
a11

,

xi =
bi −

∑i−1
j=1 aijxj

aii
, ∀i = 2, . . . , n.
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Methods for solving linear systems

How to proceed - Homogeneous linear systems

The homogeneous linear system Ax = 0, with A ∈ Km×n and x ∈ Kn, is always compatible (the
complete matrix coincides with the incomplete matrix), and we have to compute rank(A).
Then:

1 if rank(A) = n (full rank), the system admits only one solution, i.e., the trivial solution
x = (0, . . . , 0);

2 if rank(A) = r < n, the system admits ∞n−r solutions that can be determined with the suitable
known methods.

How to proceed - Non-homogeneous linear systems

For a non-homogeneous linear system Ax = b, with A ∈ Km×n, x ∈ Kn and b ∈ Km, we have to check if
the system is compatible by using the Rouché-Capelli theorem.
Then:

1 if rank(A) ̸= rank(A|b), the system does not admit solution;

2 if rank(A) = rank(A|b) = n (full rank), the system admits only one solution;

3 if rank(A) = rank(A|b) = r < n, the system admits ∞n−r solutions.

In the cases (2) and (3), the solutions are determined by using the suitable known methods.
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Linear operators

Dimension for kernel and image

Let Φ: U → V a linear operator between the vector spaces U and V over the field K, with dimK(U) = n
and dimK(V ) = m. The representation of Φ is the matrix A ∈ Km×n such that

Φ(x) = Ax, x ∈ Kn.

We have that ker(Φ) = {x ∈ U : Φ(x) = 0} is the solution set for the homogeneous system Ax = 0.
Choose a basis for U and V , respectively,

BU = {u1, . . . ,un}, BV = {v1, . . . , vm}.

Due to rank-nullity theorem, the dimension of the kernel of Φ is equal to the dimension of the solution
set for homogeneous systems, i.e.,

dimK(ker(Φ)) = n − rank(A).

and the dimension of the image of Φ is given by

dimK(Im(Φ)) = rank(A).
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Basis for kernel

If rank(A) = n, then dimK(ker(Φ)) = 0, i.e., ker(Φ) = {0}, and we do not need to find a basis;

If rank(A) = r < n, then dimK(ker(Φ)) = n − r , and we determine ∞n−r solutions of the system
Ax = 0 which depend on n − r free parameters; the recovered solutions must be expressed as linear
combinations whose coefficients are the free parameters. The vectors of such linear combinations
are a basis Bsol = {s1, . . . , sk}, with k ≤ n, for the solution set of the homogeneous system.
Two cases need to be distinguished:

1 U = Rn and BRn is the canonical basis of Rn ⇒ Bsol is a basis for ker(Φ);
2 U ̸= Rn or BRn is not the canonical basis of Rn ⇒ the i-th vector basis of ker(Φ) is determined

by a linear combination of the vectors BU = {u1, . . . ,un} whose coefficients are the
components of si .

Basis for image

Compute rank(A) = k . Then, construct the set BC = {c1, . . . , ck}, with k ≤ n, where ck are the linearly
independent columns of A.
Two cases need to be distinguished:

1 V = Rm and BRm is the canonical basis of Rm ⇒ BC is a basis for Im(Φ);

2 V ̸= Rm or BRm is not the canonical basis of Rm ⇒ the i-th vector basis of Im(Φ) is determined by
a linear combination of the vectors BV = {v1, . . . , vm} whose coefficients are the components of ci .
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Vector spaces

Change of basis matrix

Let V be a vector space over the field K, with dimK(V ) = n, and two bases B = {v1, . . . , vn}, and
B′ = {v′1, . . . , v′n}. Then, ∀w ∈ V , we have

w =
n∑

j=1

wjvj =
n∑

i=1

w ′
i v

′
i , wj ,w

′
i ∈ K,

where wj and w ′
i are the components of w with respect to the bases B and B′, respectively.

Since the vectors vj ∈ B are elements of V , we can express them as linear combinations of the vectors v′i
belonging to the basis B′, i.e.,

vj =
n∑

i=1

Aijv
′
i .

From
w =

n∑
j=1

wjvj =
n∑

j=1

wj

(
n∑

i=1

Aijv
′
i

)
=

n∑
i=1

w ′
i v

′
i ,

it follows that
n∑

i=1

 n∑
j=1

Aijwj − w ′
i

 v′i = 0.
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Vector spaces

. . . Change of basis matrix

Due to the linear independence of vectors v′i , we have

w ′
i =

n∑
j=1

Aijwj , i = 1, . . . , n,

or, in matrix form
w′ = Aw,

where the i-th column of matrix A is made by the components of vectors vi with respect to the basis B′.
A ∈ Kn×n is called change of basis matrix from the basis B to B′.
Vice versa, if we want to determine the change of basis matrix B ∈ Kn×n from the basis B′ to B, with
the same procedure, we obtain

w = Bw′,

where the i-th column of matrix B is made by the components of vectors v′i with respect to the basis B.
From the relation

w′ = Aw = ABw′ =⇒ (AB − I)w′ = 0 =⇒ AB = I,

i.e.,
B = A−1.
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Vector spaces

Change of basis for linear operators

Let Φ: U → V be a linear operator, with dimK(U) = n and dimK(V ) = m. Let E = {e1, . . . , en},
E ′ = {e′1, . . . , e′n} bases for U, and F = {f1, . . . , fm}, F ′ = {f ′1, . . . , f ′m} bases for V . For all u ∈ U and
v ∈ V , it is

u =
n∑

j=1

ujej =
n∑

i=1

u′ie
′
i , v =

m∑
j=1

vj fj =
m∑
i=1

v ′
i f

′
i , uj , u

′
i , vj , v

′
i ∈ K,

where uj , u
′
i (vj , v

′
i ) are the components of u (v) with respect to the bases E , E ′ (F ,F ′), respectively. By

means of the change of basis, we get

u′ = Au, v′ = Bv,

where A ∈ Kn×n is the change of basis matrix from the basis E to E ′, and B ∈ Km×m is the change of
basis matrix from the basis F to F ′. From the representation of a linear operator, we have

v = Tu, v′ = T ′u′,

where T ∈ Km×n is the associated matrix with respect to the bases E and F , and T ′ ∈ Km×n is the
associated matrix with respect to the bases E ′ and F ′. By using the above relations, we obtain:

T ′u′ = v′ = Bv = BTu = BTA−1u′ ⇒ T ′ = BTA−1.
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Vector spaces

Change of basis for endomorphism

Let Φ: V → V be a linear operator, with and dimK(V ) = n. Let B = {v1, . . . , vn} and
B′ = {v′1, . . . , v′n} bases for V , T ∈ Kn×n the associated matrix with respect to the same basis B,
T ′ ∈ Kn×n the associated matrix with respect to the same basis B′, and A ∈ Kn×n the change of basis
matrix from the basis B to B′. It is

T ′ = ATA−1,

or, equivalently,
T ′ = P−1TP,

where P ∈ Kn×n is the change of basis matrix from the basis B′ to B.
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Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Let V be a vector space over the field K, with dimK(V ) = n, and Φ: V → V a linear operator with
A ∈ Kn×n its associated matrix.
A scalar λ is called eigenvalue (or characteristic value) of the matrix A if there exists a non-zero vector
v ∈ V such that

Av = λv.

The vector v ∈ V is called eigenvector (or characteristic vector) of the matrix A corresponding to the
eigenvalue λ.

Interpretation

An eigenvector v of a linear operator Φ is a non-zero vector that, when the Φ is applied to it, does not
change direction but it is scaled by a scalar factor.
The corresponding eigenvalue is the factor by which the eigenvector is scaled.

Remark

In a finite-dimensional vector space, it is equivalent to define eigenvalues and eigenvectors in terms of
matrices or linear operators!
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Eigenvalues and eigenvectors

Eigenvalues and eigenvector - Properties

If v ∈ V is an eigenvector corresponding to the eigenvalue λ, then also αv, with α ∈ K non-zero
scalar, is an eigenvector.

The set of the eigenvalues of a linear operator is called spectrum.

The largest absolute value of the eigenvalues of linear operator (with associated matrix A) is called
spectral radius and is denoted by ρ(A).

If v1, . . . , vk , with k = 1, . . . , n, are eigenvectors associated to distinct eigenvalues of a matrix A,
then v1, . . . , vk are linearly independent.
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Eigenvalues and eigenvectors

Eigenspace

The set of all eigenvectors of a linear operator Φ: V −→ V (with associated matrix A ∈ Kn×n)
corresponding to the same eigenvalue λ, together with the zero-vector, is a subspace of V that is called
eigenspace (or characteristic space) of Φ associated to the eigenvalue λ, and is denoted by Vλ, say

Vλ = {v ∈ V such that Av = λv}.

Eigensystem

The set of all eigenvectors of a linear operator Φ: V −→ V , each paired with its corresponding
eigenvalue, is called the eigensystem of Φ.

Eigenbasis

If a set of eigenvectors of a linear operator forms a basis in V , then this basis is called eigenbasis.
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Eigenvalues and eigenvectors

Characteristic polynomial

Let Φ: V → V be a linear operator, with dimK(V ) = n, and A ∈ Kn×n its associated matrix.
A scalar λ is an eigenvalue of the matrix A if there exists a non zero-vector v ∈ V such that

Av = λv,

that is equivalent to
(A− λI)v = 0, (∗)

where I is n × n identity matrix and 0 is the zero-vector.
The result (∗) is a homogeneous linear system which will admit non-trivial solutions if and only if
rank(A− λI) < n, i.e.,

det(A− λI) = 0,

that is called characteristic equation of A. The term

p(λ) = det(A− λI)

is called characteristic polynomial in the unknown λ associated to A, and is a polynomial of degree n.
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Eigenvalues and eigenvectors

Characteristic polynomial - Properties

Since the characteristic polynomial of a n × n matrix A is a polynomial of degree n, then it admits
at most n distinct roots, i.e., at most n distinct eigevalues, and it can be factored into the product
of n linear terms,

det(A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ),

where each λi may be real but in general is a complex number. The scalars λ1, λ2, . . . , λn, which
may not all have distinct values, are the roots of the polynomial and are the eigenvalues of A.

If A ∈ Rn×n, the coefficients of the characteristic polynomial will be real numbers, but the
eigenvalues may still have non-zero imaginary parts. Therefore, the components of the
corresponding eigenvectors may also have non-zero imaginary parts.

If A ∈ Rn×n and n is odd, the characteristic polynomial has odd degree, and at least one the roots
is real; the remaining non-real roots are grouped into pairs of complex conjugates, namely with the
two members of each pair having imaginary parts that differ only in sign and the same real part.
Therefore, any real matrix with odd order has at least one real eigenvalue, whereas a real matrix
with even order may not have any real eigenvalues. The eigenvectors associated with these complex
eigenvalues are also complex and also appear in complex conjugate pairs.

If the characteristic polynomial of the matrix A is full factorizable, then A is triangolable, i.e., there
exists a basis such that the associated matrix is in triangular form.
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Eigenvalues and eigenvectors

How to compute eigenvalues and eigenvectors

1 Firstly, compute the eigenvalues of the matrix A, i.e., the roots of the characteristic polynomial, say

det(A− λI) = 0.

2 Collect λ1, . . . , λm, with 1 ≤ m ≤ n, the recovered distinct eigenvalues.

3 For each eigenvalue λi (i = 1, . . . ,m), compute the corresponding eigenspace Vλi , i.e., the set of all
eigenvectors associated to λi ; this is done by determining a basis of the eigenspace Vλi , i.e., by
looking for the solution set of the linear homogeneous system

(A− λi I)v = 0.

4 The eigenvectors corresponding to λi are the non-zero vectors of the subspace generated by the
vectors of the basis BVλi

of the eigenspace

Vλ = {v ∈ V such that (A− λI)v = 0}.
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Eigenvalues and eigenvectors

Algebraic multiplicity

The algebraic multiplicity, denoted by µa(λ), of an eigenvalue λ of a matrix A ∈ Kn×n is its multiplicity
as a root of the characteristic polynomial.
Suppose the matrix A has m ≤ n distinct eigenvalues. The characteristic polynomial can be written as
the product of m terms each corresponding to a distinct eigenvalue λi and raised to the power of the
algebraic multiplicity, i.e.,

det(A− λI) = (λ1 − λ)µa(λ1)(λ2 − λ)µa(λ2) · · · (λm − λ)µa(λm).

The eigenvalue’s algebraic multiplicity is related to the dimension n as

1 ≤ µa(λi ) ≤ n, i = 1, . . . ,m
m∑
i=1

µa(λi ) ≤ n.

If µa(λi ) = 1, then λi is said to be a simple eigenvalue.
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Eigenvalues and eigenvectors

Geometric multiplicity

The geometric multiplicity, denoted by µg (λ), of an eigenvalue λ of a matrix A ∈ Kn×n is the dimension
of the associated eigenspace Vλ, or, equivalently, the maximum number of linearly independent
eigenvectors associated with λ. Since the eigenspace

Vλ = {v ∈ V such that (A− λI)v = 0}

is precisely the kernel of the matrix (A− λI), the rank-nullity theorem implies that

µg (λ) = dimK(Vλ) = n − rank(A− λI).

Relation between algebraic and geometric multiplicity

For the algebraic and geometric multiplicity of an eigenvalue λ of a matrix A ∈ Kn×n, the following
relation holds:

1 ≤ µg (λ) ≤ µa(λ) ≤ n.
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Eigenvalues and eigenvectors

Additional properties of eigenvalues

Let A ∈ Kn×n and λi (i = 1, . . . , n) eigenvalues of the matrix A.
The following properties hold:

det(A) = Πn
i=1λi ;

tr(A) =
n∑

i=1

Aii =
n∑

i=1

λi ;

A is invertible if and only if all its eigenvalues are non-zero;

if A is invertible, then the eigenvalues of A−1 are
1

λi
and each eigenvalue’s geometric multiplicity

coincides. Moreover, since the characteristic polynomial of the inverse matrix is the reciprocal
polynomial of the original, the eigenvalues share the same algebraic multiplicity; also, the
eigenvectors of A are the same as the eigenvectors of A−1;

if A is unitary, every eigenvalue has absolute value |λi | = 1.
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Eigenvalues and eigenvectors

Similar matrices

Two matrices A,B ∈ Kn×n are called similar if there exists an invertible matrix P ∈ Kn×n such that

B = P−1AP.

Similar matrices: properties

Similar matrices represent the same linear transformation under two (possibly) different bases, with
P being the change of basis matrix.

A transformation B 7→ P−1AP is called similarity transformation.

Two similar matrices have the same rank, determinant, trace and characteristic polynomial.
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Eigenvalues and eigenvectors

Diagonalizable matrix

Let V be a vector space over the field K, with dimK(V ) = n, and Φ: V → V a linear operator with
A ∈ Kn×n its associated matrix.
The matrix A ∈ Kn×n is diagonalizable if it is similar to a diagonal matrix Λ ∈ Kn×n, i.e., there exists an
invertible matrix P ∈ Kn×n such that

Λ = P−1AP, or, equivalently, A = PΛP−1,

where

the i-th column of P is the i-th eigenvector of A;

the diagonal elements of Λ are the corresponding eigenvalues, i.e., Λii = λi ;

the eigenvectors of A form a basis for V .

The number of linearly independent eigenvectors with non-zero eigenvalues is equal to the rank of the
matrix A.

Remark

In an equivalent way, the linear operator Φ: V → V is diagonalizable if there exists a basis of V made of
the eigenvectors of the associated matrix A!
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Eigenvalues and eigenvectors

Eigendecomposition

If A ∈ Kn×n can be decomposed into a matrix P ∈ Kn×n composed of its linearly independent
eigenvectors, a diagonal matrix Λ ∈ Kn×n with its eigenvalues along the diagonal, and the inverse of the
matrix P of eigenvectors, say

A = PΛP−1,

this procedure is called eigendecomposition and it is a similarity transformation.
The matrix P is the change of basis matrix of the similarity transformation. Essentially, the matrices A
and Λ represent the same linear transformation expressed in two different bases.

Theorem

Let V be a vector space over the field K, with dimK(V ) = n, and Φ: V → V a linear operator with
A ∈ Kn×n its associated matrix.
The matrix A ∈ Kn×n is diagonalizable if and only if:

1 λi ∈ K ∀i = 1, . . . , n;

2
∑n

i=1 µa(λi ) = n;

3 µa(λi ) = µg (λi ) ∀i = 1, . . . , n.
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Eigenvalues and eigenvectors

Properties

If A ∈ Kn×n is symmetric ⇒ A is diagonalizable.

If A ∈ Kn×n has n distinct eigenvalues λi ∈ K ⇒ A is diagonalizable.

If A ∈ Kn×n can be eigendecomposed and if none of its eigenvalues are zero ⇒ A is invertible and
its inverse is given by

A−1 = PΛ−1P−1.

Furthermore, since Λ is a diagonal matrix, its inverse is easy to compute Λ−1
ii = 1

λi
.

If A ∈ Rn×n is symmetric ⇒ all eigenvalues of A are real.

If A ∈ Rn×n is symmetric ⇒ eigenvectors corresponding to distinct eigenvalues are orthogonal.

If A ∈ Rn×n is symmetric ⇒ the eigenvalues are real and the eigenvectors can be chosen real and
orthonormal. Thus a real symmetric matrix A can be decomposed as

A = QΛQT (equivalently, Λ = QTAQ),

where Q is an orthogonal matrix (Q−1 = QT ) whose columns are the real orthonormal eigenvectors
of A.

If A ∈ Rn×n is a symmetric matrix positive definite, positive semi-definite, negative definite, or
negative semi-definite ⇒ each eigenvalue is positive, non negative, negative, or non positive.
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Quadratic forms

Quadratic form

Let V be a vector space over K, with dimK(V ) = n, and B = {v1, . . . , vn} a basis for V .
An n–ary quadratic form over a field K is a homogeneous polynomial q(x1, . . . , xn) of degree 2 in n
variables with coefficients in K:

q(x) = q(x1, . . . , xn) =
n∑

i=1

n∑
j=1

aijxixj ,

where x = (x1, . . . , xn) ∈ V , xi are the components of x with respect to the basis B, and aij ∈ K are
called coefficients of the quadratic form.
Equivalently, in matrix form

q(x) = xTAx,

where A ∈ Kn×n is the symmetric matrix associated to q(x).
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Quadratic forms

Associated symmetric matrix

Any symmetric matrix A ∈ Kn×n determines a unique quadratic form q(x1, . . . , xn) in n variables by

q(x1, . . . , xn) =
n∑

i=1

n∑
j=1

aijxixj = xTAx.

Vice versa, a quadratic form q(x1, . . . , xn) in n variables, defined by A ∈ Kn×n, determines a unique
matrix B ∈ Kn×n, say

bij =
aij + aji

2
,

that is symmetric, defines the quadratic form q(x1, . . . , xn) as the matrix A and is the unique symmetric
matrix that defines q(x1, . . . , xn).

Remark

Over the real numbers, there is a one-to-one correspondence between quadratic forms and symmetric
matrices that determine them.
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Quadratic forms

Example

Consider the matrix A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 . The quadratic form q(x) = xTAx in the variables

x = (x1, x2, x3) associated to the matrix A is

q(x) =
(
x1 x2 x3

)a11 a12 a13
a21 a22 a23
a31 a32 a33

x1
x2
x3

 =

= a11x
2
1 + (a12 + a21)x1x2 + (a13 + a31)x1x3 + a22x

2
2 + (a23 + a32)x2x3 + a33x

2
3 .

So, two matrices define the same quadratic form if and only if they have the same elements on the
diagonal and the same values for the sums a12 + a21, a13 + a31 and a23 + a32. In particular, the quadratic
form q(x) is defined by a unique symmetric matrix

A =


a11

a12 + a21
2

a13 + a31
2

a12 + a21
2

a22
a23 + a32

2
a13 + a31

2

a23 + a32
2

a33

 .
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Quadratic forms

Equivalent quadratic forms

Let V be a vector space over K, with dimK(V ) = n, q(x) = xTAx and p(x) = xTBx be n-ary quadratic
forms over the field K with associated symmetric matrices A,B ∈ Kn×n, respectively.
The quadratic forms p(x) and q(x) are called equivalent if there exists an invertible matrix C ∈ Kn×n

such that
p(x) = q(Cx).

It follows that
xTBx = p(x) = q(Cx) = (Cx)TA(Cx) = xTCTACx,

i.e., the symmetric matrices A of q(x) and B of p(x) are related as

B = CTAC .
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Quadratic forms

Real quadratic forms

Let V be a real vector space, with dimR(V ) = n, and q(x) be an n–ary quadratic form over the field R.
In this case, q(x) is called real quadratic form.

Equivalence of real quadratic forms

Every n-ary real quadratic form q(x) = xTAx, with associated symmetric matrix A ∈ Rn×n, is equivalent
to a diagonal form

p(x) = λ1x
2
1 + λ2x

2
2 + · · ·+ λnx

2
n = xTΛx,

where Λ is a diagonal matrix whose entries are the real eigenvalues λi of A.
In fact, since A is a real symmetric matrix, A can be eigendecomposed and we have

Λ = QTAQ

where Q is an orthogonal matrix whose columns are the orthonormal eigenvectors of A. It is

p(x) = xTΛx = xTQTAQx = (Qx)TA(Qx) = q(Qx).

The quadratic form p(x) is represented in diagonal form with respect to the orthonormal basis B′ of
eigenvectors of A.
Classification of all real quadratic forms up to equivalence can be reduced to the case of diagonal forms!

Matteo Gorgone Mathematics for Data Analysis: Linear Algebra 190/201



Quadratic forms

Definiteness of quadratic forms

Let V be a real vector space, with dimR(V ) = n, and q(x) = xTAx be an n–ary real quadratic form with
associated symmetric matrix A ∈ Rn×n.
A definite quadratic form is a real quadratic form over the vector space V that has the same sign for
every non-zero vector of V .
In general, a real quadratic form q(x) = xTAx (or, equivalently, the associated symmetrix matrix
A ∈ Rn×n) is:

positive definite if xTAx > 0 ∀x ∈ V , x ̸= 0;

positive semi-definite if xTAx ≥ 0 ∀x ∈ V ;

negative definite if xTAx < 0 ∀x ∈ V , x ̸= 0;

negative semi-definite if xTAx ≤ 0 ∀x ∈ V ;

indefinite if ∃ x, y ∈ V : xTAx > 0, yTAy < 0.
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Quadratic forms

Leading principal minor

The k-th leading principal minor of a matrix A ∈ Kn×n is the determinant of the k × k sub-matrix
obtained from A by deleting the last n − k rows and the last n − k columns.

Principal minor

The k-th principal minor of a matrix A ∈ Kn×n is the determinant of the k × k sub-matrix obtained from
A by deleting n − k rows and columns with the same indices.

Remark

For an n × n square matrix there are n leading principal minors.

Remark

If M is a leading principal minor of a matrix A ∈ Kn×n ⇒ M is a principal minor of a matrix A ∈ Kn×n.
The converse is not in general true!
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Quadratic forms

Example: leading principal minors

The matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


has 1-th, 2-th and 3-th leading principal minors

M1 = det
(
a11
)
= a11, M2 = det

(
a11 a12
a21 a22

)
, M3 = det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

respectively.
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Quadratic forms

Example: principal minors

The matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


has the principal minors

1-th −→ M1 = det
(
a11
)
= a11, M2 = det

(
a22
)
= a22, M3 = det

(
a33
)
= a33,

2-th −→ M4 = det

(
a11 a12
a21 a22

)
, M5 = det

(
a11 a13
a31 a33

)
, M6 = det

(
a22 a23
a32 a33

)
,

3-th −→ M7 = det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
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Quadratic forms

Definiteness of quadratic forms - Sylvester’s criterion

Let V be a vector space over R, with dimR(V ) = n, and q(x) = xTAx be an n–ary real quadratic form
with associated symmetric matrix A ∈ Rn×n. The definiteness of the quadratic form (equivalently, the
sign of the matrix A) is characterized by the sign of leading principal minors and the principal minors of
A. Then:

A is positive definite if and only if its all leading principal minors are positive;

A is positive semi–definite if and only if its all principal minors are non–negative;

A is negative definite if and only if its all leading principal minors of odd order are negative, and all
leading principal minors of even order are positive;

A is negative semi–definite if and only if its all principal minors of odd order are non-positive, and
all principal minors of even order are non-negative;

A is indefinite in all the remaining cases.
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Quadratic forms

Gauss elimination for definiteness of quadratic forms

Let V be a vector space over R, with dimR(V ) = n, and q(x) = xTAx be an n–ary real quadratic form
with associated symmetric matrix A ∈ Rn×n.
By means of Gauss elimination, the associated symmetric matrix A can be reduced to an upper triangular
form, by preserving the sign of its determinant during the pivoting process. The product of the elements
of the diagonal (the pivots) is the determinant and, since the k-th leading principal minor of a triangular
matrix is the product of its diagonal elements up to row k , Sylvester’s criterion for definetess of quadratic
forms (or sign of the matrix) is equivalent to checking the sign of the diagonal elements. This condition
can be checked each time a new row k of the triangular matrix is obtained during the Gauss elimination.
Then:

A is positive definite if and only if all pivots are positive;

A is positive semi–definite if and only if all pivots are non–negative;

A is negative definite if and only if all pivots are negative;

A is negative semi–definite if and only if all pivots are non–positive;

A is indefinite if and only if there are positive and negative pivots.
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Quadratic forms

Definiteness of quadratic forms - Characterization in terms of eigenvalues

Let V be a vector space over R, with dimR(V ) = n, and q(x) = xTAx be an n–ary real quadratic form
with associated symmetric matrix A ∈ Rn×n.
Since A is a real symmetric matrix, all eigenvalues of A are real, and their sign characterize the
definiteness of the quadratic form (equivalently, the sign of the matrix A).
Then:

A is positive definite if and only if its all eigenvalues are positive;

A is positive semi–definite if and only if its all eigenvalues are non–negative;

A is negative definite if and only if its all eigenvalues are negative;

A is negative semi–definite if and only if its all eigenvalues are non–positive;

A is indefinite if and only if it admits both positive and negative eigenvalues.
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Quadratic forms

Descartes’ rule of signs

The sign of eigenvalues can be checked using Descartes’ rule of alternating signs when the characteristic
polynomial of a real symmetric matrix M ∈ Rn×n is available. In such a case, all eigenvalues will be real.
As well known, the characteristic polynomial of M is a polynomial of degree n that, ordered by
descending variable exponent, can be written as

p(λ) = anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0, ai ∈ R.

Descartes’ rule:

if a0 ̸= 0, there are non-zero roots, and the number of positive roots (a root of multiplicity k is
counted as k roots) of the polynomial is equal to the number of sign changes between consecutive
(non-zero) coefficients; for negative roots, we have

number of negative roots = n − (number of positive roots);

if a0 = 0, collect the polynomial by a common factor; then, there are zero roots counted with their
multiplicity, the number of positive roots can be computed for the obtained polynomial after
collection as in the previous case; for negative roots, we have

number of negative roots = n − (number of zero roots)− (number of positive roots).
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Quadratic forms

Example

Consider the quadratic form q(x1, x2, x3, x4, x5) associated to the real symmetric matrix

A =


4.85559 4.15077 2.86879 2.71129 2.42802
4.15077 4.96922, 3.58577 3.05249 3.04842
2.86879 3.58577 4.48631 3.41923 3.8877
2.71129 3.05249 3.41923 4.72888 3.45937
2.42802 3.04842 3.8877 3.45937 3.93873


The characteristic polynomial of A is

p(λ) = −λ5 + 22.9787λ4 − 101.928λ3 + 149.154λ2 − 77.3386λ+ 11.691.

Since in p(λ) there are 5 sign changes, the matrix A admits 5 positive eigenvalues =⇒ A, and so the
quadratic form q(x1, x2, x3, x4, x5), is positive definite.
In fact, the eigenvalues of A are

λ1 = 0.258844, λ2 = 0.612167, λ3 = 1.35774, λ4 = 3.07432, λ5 = 17.6756.
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Quadratic forms

Example

Consider the quadratic form q(x1, x2, x3, x4, x5) associated to the real symmetric matrix

A =


3.67822 4.32808 3.69609 3.1335 3.21014
4.32808 2.10251 3.48111 3.57061 3.5567
3.69609 3.48111 1.53572 3.49061 3.13288
3.1335 3.57061 3.49061 3.27227 2.8812
3.21014 3.5567 3.13288 2.8812 3.31134


The characteristic polynomial of A is

p(λ) = −λ5 + 13.9001λ4 + 44.72λ3 + 10.3076λ2 − 30.6237λ+ 7.1184.

Since in p(λ) there are 3 sign changes, the matrix A admits 3 positive eigenvalues and 2 negative
eigenvalues =⇒ A, and so the quadratic form q(x1, x2, x3, x4, x5), is indefinite.
In fact, the eigenvalues of A are

λ1 = 0.317928, λ2 = 0.444959, λ3 = −1.65589, λ4 = −1.82825, λ5 = 16.6213.
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Quadratic forms

Properties

Let M ∈ Rn×n be symmetric. M is positive definite ⇔ M can be decomposed as M = ATA, with
A ∈ Rn×n invertible.

Let M ∈ Rn×n be symmetric. M is positive definite ⇔ M can be decomposed in a unique way as
M = LLT (Cholesky decomposition), where L ∈ Rn×n is a lower triangular matrix with positive
diagonal entries. If M is only positive semi–definite, then the Cholesky decomposition of the form
M = LLT still holds where the diagonal entries of L are allowed to be zero, and this decomposition
needs not be unique.

M ∈ Rn×n is negative (semi) definite ⇔ −M is positive (semi) definite.

Every positive definite matrix M ∈ Rn×n is invertible and its inverse M−1 is also positive definite.

If M ∈ Rn×n is positive definite ⇒ rank(M) = n.

If M ∈ Rn×n is positive definite and r > 0 is a real number ⇒ rM is positive definite.

If M,N ∈ Rn×n are positive (semi) definite ⇒ M + N is positive (semi) definite.

If M,N ∈ Rn×n are positive definite and MN = NM ⇒ MN is positive definite.

If M,N ∈ Rn×n are positive definite ⇒ MNM and NMN are positive definite.

If M ∈ Rn×n is positive semi–definite ⇒ ATMA is positive semi–definite for any (possibly
rectangular) matrix A. If M is positive definite and A has full rank, then ATMA is positive definite.
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